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Mixed Integer Nonlinear Optimization

min f (x)
s.t. gi(x) ≤ 0 i = 1, . . . ,m

x ∈ X

xj ∈ Z j = 1, . . . , p
lj ≤ xj ≤ uj j = 1, . . . , p

(MINO)

X ⊆ Rn polyhedral.

f and gi : X → R, i = 1, . . . ,m,
continuous, differentiable.
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"Well solved" subproblems

Nonlinear Programming (NLP)

p = 0 : local optima. + f and gi convex ⇒ global optima.

Mixed-Integer linear programming (MILP)

f linear, m = 0, p > 0
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The complexity issue

Theorem ([Jeroslow, 1973])
The problem of minimizing a linear form over quadratic constraints in integer
variables is not computable by a recursive function.

Theorem ([De Loera et al., 2006])
The problem of minimizing a linear function over polynomial constraints in at
most 10 integer variables is not computable by a recursive function.
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There is no algorith
m to solve (MINO) ...
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The complexity issue

Theorem ([Jeroslow, 1973])
The problem of minimizing a linear form over quadratic constraints in integer
variables is not computable by a recursive function.

Theorem ([De Loera et al., 2006])
The problem of minimizing a linear function over polynomial constraints in at
most 10 integer variables is not computable by a recursive function.

There is no algorith
m to solve (MINO) ...

... even in small dimension.
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MINO

min f (x)
s.t. gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X

xj ∈ Z j = 1, . . . , p
lj ≤ xj ≤ uj j = 1, . . . , p

(PNLM)

To be solvable in general, lj , uj finite.
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Two main classes of MINO

Mixed Integer Convex Optimization
Assume that the continuous relaxation is a convex optimization problem.

f is a convex function.

gi are convex functions.

Mixed Integer Nonlinear Optimization
Don’t assume any convexity on f or gi .

Continuous relaxation is NP-hard to solve in general.

Remark: if lj and uj are finite, an integer variable xj can be seen as a
continuous satisfying:

(xj − lj)(xj − lj − 1)....(xj − uj) = 0
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A special class of convex MINLP: MISOCP

min cT x

xTQkx + aTk x ≤ a0
k k = 1, . . . ,m,

Ax = b,
xj ∈ Z j = 1, . . . , p.

(MIQCP)

Where all quadratic constraints can be represented as second order cones (or
Lorentz cone):

Ld := {(x , x0) ∈ Rd+1 :

d
∑

i=1

x2
i ≤ x2

0 , x0 ≥ 0}.

(Ld defines the (d + 1)-dimensional second order cone.)
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A Lorentz cone

It is convex!
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Second order cone representability

Through simple algebra can be represented as second order cones:

Second order cones:
∑d

i=1 x
2
i ≤ x2

0 , with x0 ≥ 0

Rotated second order cones:
∑d

i=2 x
2
i ≤ x0x1, with x0, x1 ≥ 0

Simple convex quadratic constraints:

xTQx + aT x ≤ a0, with Q � 0

or more complicated...

||xTQx + aT x || ≤ cT x + b, with Q � 0

(the first three should be recognized by most solvers, the last one not.)

Many non-linear constraints can be formulated as second order cones but
modeling may be very far from obvious.

9 ©2017 IBM Corporation



MISOCP

min cTx

(xJi , xhi ) ∈ Ldi i = 1, . . . ,m
Ax = b,
xj ∈ Z j = 1, . . . , p.

(MISOCP)

MINLP’s where all nonlinear constraints are SOC

Continuous relaxation solved efficiently by interior points.

convex MINLP algorithms work with some added technicality due to
non-differentiability [Drewes, 2009, Drewes and Ulbrich, 2012].

Supported by most MIP solvers (all the ones you saw these 2 weeks).
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MISOCP Applications

Application SOC Integer

Portfolio optimiza-
tion

Risk, utility, robust-
ness

number of assets,
min investment

[Bienstock, 1996, Bonami and Lejeune, 2009, Vielma et al., 2008]
Truss topology opti-
mization

Physical forces Cross section of bars

[Achtziger and Stolpe, 2006]
Networks with delays Delay as function of

traffic
Path, flows

[Boorstyn and Frank, 1977, Ameur and Ouorou, 2006]
Location with
stochastic services

Demands location model

[Elhedhli, 2006]
TSP with neighbor-
hoods (Robotics)

Definition of ngbh. TSP

[Gentilini et al., 2013]
Many more... see for eg. http://cblib.zib.de.
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Mixed Integer Convex Programming Applications (not
MISOCP)

Application nonlinear discrete
Chemical plant design Chemical reactions what to install
[Duran and Grossmann, 1986, Flores-Tlacuahuac and Biegler, 2007]
Block Layout Design Spatial constraints what to layout
[Castillo et al., 2005]
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Mixed Integer Nonlinear Optimization Applications

Application nonlinear discrete

Petrochemical Blending, pooling –
[Haverly, 1978]
Gaz/Water networks you know from last week
[Koch et al., 2015, Bragalli et al., 2011]
Nuclear Reactor reloading reactions What to reload
[Quist et al., 1999]
Airplane trajectories aerodynamics waypoints, colisions
[Cafieri and Durand, 2013, Soler et al., 2013]
Mixed Integer Optimal control DE discrete controls
[Sager, 2005, 2012]
Countless more . . . . . .
see for example [Belotti et al., 2013]
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Agenda

Non-convex MIQP
Basic Setup of a Spatial Branch-and-Bound.
Cuts from the Boolean Quadric Polytope

Classification of Convex MIQP with Machine Learning
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(MI)QP

min
1

2
xTQx + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)

(with Q symmetric),
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(MI)QP

min
1

2
xTQx + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)

(with Q symmetric),

History of MIQP with CPLEX
class p Q algorithm V. (Year)
Convex QP 0 � 0 barrier 4.0 (1995)
– – – QP simplex 8.0 (2002)
convex MIQP > 0 � 0 B&B 8.0 (2002)
nonconvex QP 0 6� 0 barrier (local) 12.3 (2011)
– – – spatial B&B (global) 12.6 (2013)
nonconvex MIQP > 0 6� 0 spatial B&B (global) 12.6 (2013)
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Example

Let G = (N ,E ) be a graph and Q be the incidence matrix of G . The optimal
value of:

max
1

2
xTQx

s.t.
∑

xj = 1

x ≥ 0.

is 1
2

(

1 − 1
χ(G)

)

where χ(G) is the clique number of G

[Motzkin and Straus, 1965],

⇒ QP is NP-hard

More generally QPs on the simplex (general Q) can be solved by a
nonlinear maximum clique algorithm [Scozzari and Tardella, 2008].
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Local solver of nonconvex QP

Primal Dual Interior Point Algorithm.

Available since IBM CPLEX 12.3.

Not enabled by default, if Q is indefinite CPLEX will return
CPXERR_Q_NOT_POS_DEF.

Activated by setting the option optimality target to 2 (or
CPX_OPTIMALITYTARGET_FIRSTORDER).

Approach used by Ipopt but no need for
Feasibility restoration
Second order correction
Filter

Own implementation of indefinite factorization.
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Global (MI)QP

Activated by setting optimality target to 3 (or
CPX_OPTIMALITYTARGET_GLOBAL ).

Note: previous versions could already solve some nonconvex MIQPs (pure
0-1 QPs, convex after presolve...)

Notes on complexity

Checking if a feasible solution is not a local minimum is coNP-Complete.

Checking if a nonconvex QP is unbounded is NP-complete.

Spatial B&B

Establish a convex (easily solvable) relaxation.

Establish branching rules on solutions of this relaxation.
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a a square x2
1

x1

y

x1 = l1 x1 = u1

{y ≤ x2
1}

19 ©2017 IBM Corporation



Elementary relaxations: Secant Approximation

The convex hull relaxations of a a square x2
1

x1 = l1 x1 = u1

Secant approximation
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a a square x2
1

x2
1 ≤ y+

ii := (l1 + u1)x1 − l1u1

19 ©2017 IBM Corporation



Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1x2 ≥ y−
12 := max

{

u2x1 + u1x2 − u1u2

l2x1 + l1x2 − l1l2

}

x1x2 ≤ y+
12 := min

{

u2x1 + l1x2 − l1u2

l2x1 + u1x2 − u1l2

}

x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1x2 ≥ y−
12 := max

{

u2x1 + u1x2 − u1u2

l2x1 + l1x2 − l1l2

}

x1x2 ≤ y+
12 := min

{

u2x1 + l1x2 − l1u2

l2x1 + u1x2 − u1l2

}

x1

x2

x1x2

Depending on the sign of qij we only need y+ or y−.
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Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

min
1

2
xTPx +

1

2
xT Q̃x + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)

21 ©2017 IBM Corporation



Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

Add one yij = xixj variable for each non-zero entry qij of Q̃.

min
1

2
xTPx +

1

2
〈Q̃,Y 〉+ cTx

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

Y = xxT

l ≤ x ≤ u

(MIQP)

( 〈Q,Y 〉 =
∑

i ,j qijyij )
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Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

Add one yij = xixj variable for each non-zero entry qij of Q̃.

Relax yij = xixj using McCormick and Secant approximations.

min
1

2
xTPx +

1

2
〈Q̃,Y 〉+ cTx

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

y−
ij ≤ yij ≤ y+

ij

yii ≤ y+
ii

l ≤ x ≤ u

(q-MIQP)

21 ©2017 IBM Corporation



Factorizations of Q

Our block indefinite decomposition: M and B such that M 2-block
triangular and B 2-blocks diagonal with Q = MTBM

Reformulate xTQx using additional variables z so that zTDz = xTBx

and D diagonal. Let L, D give the spectral decomposition of B, z = Lζ,
ζ = Mx .

(For simplicity assume z = Lx gives the system we want)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the same steps
as before (but more simple)....

min
1

2
zTDz + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the same steps
as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

min
1

2
(zTD+z − zTD−z) + cTx

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and
relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the same steps
as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

Add yii ≤ z2 variable for each non-zero of D−.

min
1

2
zTD+z −

n
∑

i=1

dii

2
yii + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

yii ≤ z2
i

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and

relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the same steps
as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

Add yii ≤ z2 variable for each non-zero of D−.

Infer finite bounds, l z , uz for z and relax yii ≤ z2
i using Secant

approximations.

min
1

2
zTD+z −

n
∑

i=1

dii

2
yii + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

yii ≤ y+
ii

l ≤ x ≤ u, l z ≤ z ≤ uz

(ev-MIQP)
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Notes on the two relaxations

The steps are almost the same.

If Q is diagonal the two relaxations are identical.

In general they are not comparable.

If Q � 0, EV-space is better it preserves convexity.

Q-space gives a surpisingly good approximation [Luedtke et al., 2012]
show that, if Q has a 0 diagonal, for the box QP:
min{xTQx : 0 ≤ x ≤ 1}:

if Q ≥ 0 the approximation is within a factor 2:
if Q 6≥ 0 the approximation is within a factor of # nnz in Q (conjecture it
is better)
Many ways to do different splittings of Q for eg. with SDP
[Billionnet et al., 2012].

CPLEX current strategy

By default, uses EV-space if problem looks almost convex.

Can be controled with parameter.
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Branching

Let (x , y) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij 6= x ix j , (x , y ) is not a solution of the problem and we need to
branch.

Pick such an index i , choose a value θ between li+ui
2

and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

x1

x2

x1x2
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Branching

Let (x , y) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij 6= x ix j , (x , y ) is not a solution of the problem and we need to
branch.

Pick such an index i , choose a value θ between li+ui
2

and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

xi = θ

x1 = θ
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Branching

Let (x , y) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij 6= x ix j , (x , y ) is not a solution of the problem and we need to
branch.

Pick such an index i , choose a value θ between li+ui
2

and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

xi = θ

x1 = θ
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Notes on unbounded problems

Try to bound all auxiliary variables with a basic presolve.

If not possible, do it by solving LPs.

If there is an unbounded direction r look at its cost rTQr :
If rTQr < 0: problem is unbounded,
If rTQr ≥ 0: relaxation is unbounded but can’t conclude on problem
status, return RELAXATION_UNBOUNDED.

(Very easy to construct examples where can’t conclude).

[Hu et al., 2012]

Propose a KKT system that detects unbounded problems correctly.

Use a combinatorial benders approach to solve it.
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Other ingredients

Convex QP relaxation solved by a QP simplex.

Interior point solver for improving incumbents.

Bound strengthening based on the KKT system.

Linearize completely parts of the problem involving binary variables.

Heuristic detection of unbounded problems.

Multi-threaded.
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Joint work with
Oktay Günlük - IBM Research
Jeff Linderoth - University of Wisconsin-Madison

Solving Box-Constrained Nonconvex Quadratic
Programs via Integer Programming Methods

28 ©2017 IBM Corporation



Box QP

We consider the box constrained QP:

min
1

2
xTQx + cT x

s.t.

0 ≤ x ≤ 1

(box-QP)

Bounds 0 and 1 are without loss of generality (every box QP can be
scaled to those bounds).

Still NP-Hard.

Has some academic interest [Vandenbussche and Nemhauser, 2005,
Burer and Vandenbussche, 2009, Chen and Burer, 2012]

Also some applications [Moré and Toraldo, 1989] (usually huge size).
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Box QP and Boolean Quadratic Optimization

Proposition ([Burer and Letchford, 2009])
Assume that Q is without diagonal term (Qii = 0, i = 1, . . . , n).
Let Y Q be the set where variables y represent the products in Q:

Y Q = {(x ,Y ) : yij = xixj , ∀i , j such that i 6= j and qij 6= 0}.

We have

conv
(

(x ,Y ) ∈ Y Q : x ∈ [0, 1]n
)

= conv
(

(x ,Y ) ∈ Y Q : x ∈ {0, 1}n
)

.

Corollary
This set is the Boolean Quadratic Polytope (BQP) [Padberg, 1989]. Relaxing
diagonal terms of Q using 0 ≤ Yii ≤ xi , we obtain a BQP (binary) relaxation
of box-QP.
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Box-QP and BQP relaxation/restriction

min 1/2

∑

i,j :qij 6=0

qijyij + c
T
x

s.t.

yij = xixj

0 ≤ x ≤ 1

(Box-QP)
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Box-QP and BQP relaxation/restriction

min 1/2

∑

i,j :qij 6=0

qijyij + c
T
x

s.t.

yij = xixj

0 ≤ x ≤ 1

(Box-QP)

min 1/2(
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii 6=0

qiiyii ) + c
T
x

s.t.

max{
0

xi + xj − 1
} ≤ yij ≤ min{

xi
xj

}

0 ≤ yii ≤ xi

0 ≤ x ≤ 1
(M)
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Box-QP and BQP relaxation/restriction

min 1/2

∑

i,j :qij 6=0

qijyij + c
T
x

s.t.

yij = xixj

0 ≤ x ≤ 1

(Box-QP)

min 1/2(
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii 6=0

qiiyii ) + c
T
x

s.t.

max{
0

xi + xj − 1
} ≤ yij ≤ min{

xi
xj

}

0 ≤ yii ≤ xi

0 ≤ x ≤ 1
(M)

min 1/2(
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii<0

qiixi ) + c
T
x

s.t.

y
−
ij ≤ yij ≤ y

+
ij

0 ≤ yii ≤ xi

x ∈ {0, 1}n

(BQP)
31 ©2017 IBM Corporation



Box-QP and BQP relaxation/restriction

min 1/2

∑

i,j :qij 6=0

qijyij + c
T
x

s.t.

yij = xixj

0 ≤ x ≤ 1

(Box-QP)

min 1/2(
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii 6=0

qiiyii ) + c
T
x

s.t.

max{
0

xi + xj − 1
} ≤ yij ≤ min{

xi
xj

}

0 ≤ yii ≤ xi

0 ≤ x ≤ 1
(M)

min 1/2(
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii<0

qiixi ) + c
T
x

s.t.

y
−
ij ≤ yij ≤ y

+
ij

0 ≤ yii ≤ xi

x ∈ {0, 1}n

(BQP)

min
∑

i 6=j :qij 6=0

qijyij +
∑

i :qii 6=0

qiiyii + c
T
x

s.t.

y
−
ij ≤ yij ≤ y

+
ij

0 ≤ yii ≤ xi

x ∈ {0, 1}n

(BQP-R)
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Boolean Quadric Relaxation Bounds 1

Size Density # MC Gap BQP Root BQP BQP-Restrict.
Small Low 6 35.49 90.34 90.48 100.00

Medium 9 59.93 90.12 90.24 100.08
High 27 78.96 89.30 89.69 100.03

Medium Low 12 47.37 94.88 94.88 100.03
Medium 6 108.81 93.80 95.66 100.02

High 3 163.47 91.55 96.74 100.02
Large Low 6 68.65 95.60 96.92 100.06

Medium 6 124.88 94.26 97.32 100.00
High 6 180.85 89.10 96.22 100.00

Jumbo Low 6 93.91 94.30 97.87 100.01
Medium 6 170.78 89.89 94.36 100.07

High 6 232.44 84.89 88.71 100.39

1Experiments on test set of [Vandenbussche and Nemhauser, 2005,
Burer and Vandenbussche, 2009]
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Chvátal Gomory cuts

Consider the feasible set of solutions to a generic integer program
P I = PLP ∩ Zn where

PLP = {x ∈ Rn | Ax ≥ b}

For any α ∈ Rm
+, αTAx ≥ αT b is satisfied by all feasible solutions of PLP .

Furthermore, if αTA ∈ Zn

αTAx ≥ ⌈αT b⌉ (1)

is satisfied by all feasible solutions of P I .
This inequality is called a Chvátal-Gomory cut [Gomory, 1958, Chvátal, 1973].
In the special case when α ∈ {0, 1/2}m, Inequality (1) is called a 0-1/2 cut
[Caprara and Fischetti, 1996].
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CG cuts for Boolean Quadric Polytope

Theorem
All non-dominated Chvátal-Gomory cuts for the bqp are 0-1/2 cuts.

Proof idea

Every non-dominated 0-1/2 cut has a combinatorial form and is a odd-hole inequality
[Padberg, 1989].

Use a result of Padberg on bases of BQP, that shows that multipliers are 0-1/2.

Related results for cut polytope [Barahona, 1993] and when Q is fully dense
[Boros et al., 1992].

34 ©2017 IBM Corporation



CG cuts for Boolean Quadric Polytope

Theorem
All non-dominated Chvátal-Gomory cuts for the bqp are 0-1/2 cuts.

Proof idea

Every non-dominated 0-1/2 cut has a combinatorial form and is a odd-hole inequality
[Padberg, 1989].

Use a result of Padberg on bases of BQP, that shows that multipliers are 0-1/2.

Related results for cut polytope [Barahona, 1993] and when Q is fully dense
[Boros et al., 1992].

Computational consequences

Separating CG or even 0-1/2cuts NP-hard in general [Caprara and Fischetti, 1996,
Eisenbrand, 1999]

Instead, odd cycle inequalities can be separated in polynomial time
[Barahona and Mahjoub, 1986, Barahona et al., 1989].

But MILP solvers have fast heuristics for finding 0-1/2cuts [Koster et al., 2009]...
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Comparison of Bounds by cuts

MC Cplex All BQP
Size Density # Gap 0-1/2 0-1/2 Relax

Small Low 6 35.49 90.34 90.48 90.48
Medium 9 59.93 90.12 90.24 90.24

High 27 78.96 89.30 89.45 89.69
Medium Low 12 47.37 94.88 94.88 94.88

Medium 6 108.81 93.80 94.52 95.66
High 3 163.47 91.55 92.00 96.74

Large Low 6 68.65 95.60 96.71 96.92
Medium 6 124.88 94.26 95.64 97.32

High 6 180.85 89.10 89.47 96.22
Jumbo Low 6 93.91 94.30 95.84 97.87

Medium 6 170.78 89.89 90.53 94.36
High 6 232.44 84.89 84.95 88.71
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Strengthened Convex Relaxation

In the BQP relaxation, we relaxed completely the diagonal of Q using
0 ≤ Yii ≤ xi

Instead, we can relax using x2
i ≤ Yii ≤ xi and keep some quadratic terms of Q

This leads to a convex MIQP relaxation, with a diagonal quadratic objective

We denote this strengthened relaxation M2
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Strength of Convex Relaxation M2

% Gap Closed
Size Density # M2 M + 0-1/2 M2 + 0-1/2 ∆(M2)

Small Low 6 4.68 90.34 99.29 8.95
Medium 9 3.67 90.12 98.58 8.46

High 27 3.55 89.30 98.64 9.34
Medium Low 12 2.39 94.88 99.69 4.82

Medium 6 1.72 93.80 96.83 3.03
High 3 1.23 91.55 93.04 1.49

Large Low 6 1.08 95.60 97.81 2.21
Medium 6 1.11 94.26 95.99 1.73

High 6 0.97 89.10 90.17 1.07
Jumbo Low 6 0.96 94.30 95.80 1.50

Medium 6 0.84 89.89 90.82 0.93
High 6 0.66 84.89 85.64 0.75
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Other implementation details

Using Implicit Integrality
A folklore property tells that if qii < 0 in a Box-QP, the corresponding variable
xi takes value 0 or 1 in an optimal solution.

Cuts at Branch and Bound Nodes
So far we always assumed bounds 0 ≤ x ≤ 1, all results can be adapted to
arbitrary finite bounds using shifting and scaling.
This can be used to generate locally valid cuts at nodes of the
branch-and-bound tree (or strengthen existing one).
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Comparison of CPLEX With and Without Cuts

Table: On BoxQP

Without BQP cuts With BQP cuts Ratios
Av. Av. Av. Av. Ratio Ratio

category # # t.o. time nodes time nodes time nodes
all 79 35 255.77 253301 5.38 23 40.24 7598.63
> 1 sec. 65 35 812.47 1062026 8.27 30 87.76 26274.28
> 10 sec. 56 35 1847.49 2079462 11.45 37 148.42 43925.40

Table: On instances that are not box QPs

Without BQP cuts With BQP cuts Ratios
Av. Av. Av. Av. Ratio Ratio

category # time nodes time nodes time nodes
all 75 9.90 4008 8.84 2894 1.11 1.38
> 1 sec. 43 48.80 23397 40.15 13895 1.21 1.68
> 10 sec. 29 179.30 53092 134.60 27349 1.33 1.94
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Related approaches

Separation of cuts for the box-QP (without BQP) have been developed in
Global Optimization

The McCormick formula gives the exact hull for 2 variable sets.

[Meyer and Floudas, 2005] give closed form formula for 3 variables sets.

Many approximation results on the McCormick Q-space formulation
[Coppersmith et al., 1999, Meyer and Floudas, 2005,
Luedtke et al., 2012]

Exploit closed form formula for set with up to 6 variables
[Misener and Floudas, 2013].
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SDP Approaches

box-QP also admits a natural SDP relaxations:

zS = {min〈1/2 Q,Y 〉+ cT x | Y − xxT � 0, 1 ≥ xi ≥ 0 ∀i ∈ N}

This relaxation can in turn be strengthened using:

McCormick approximations: xi + xj − 1 ≤ Yij ≤ min{xi , xj}
[Anstreicher, 2008].

The doubly non-negative relaxation of the copositive reformulation of box-QP
[Burer, 2009].

A line of exact approaches based on these relaxation and KKT formulations of
QPs [Vandenbussche and Nemhauser, 2005, Burer and Vandenbussche, 2009,
Chen and Burer, 2012].

Remark
Contrary to what we do SDP relaxation work in the space of all entries of Q
and not only non-zeroes.
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SDP-based Bounds and BQP-based Bounds for BoxQP

% Gap closed
Size Density # M2 Gap S S≥0 S +M M2 + 0-1/2

Small Low 6 35.49 80.65 99.11 99.29 99.51
Medium 9 59.93 89.79 99.4 99.46 99.29

High 27 78.97 94.15 99.76 99.8 99.13
Medium Low 12 47.37 85.85 99.33 99.55 99.90

Medium 6 108.81 93.0 98.77 98.86 98.01
High 3 163.47 95.68 99.24 99.31 93.52

Large Low 6 68.65 88.61 98.2 98.65 98.28
Medium 6 124.89 94.96 99.05 99.25 97.48

High 6 180.85 96.34 99.14 99.29 90.60
Jumbo Low 6 93.91 92.9 98.35 98.84 96.28

Medium 6 170.78 95.25 98.6 98.82 91.42
High 6 232.44 96.67 98.96 99.16 85.68
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SDP/BQP Computing times
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Comparing Solvers on Box-QP Instances
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Comparing Solvers on Larger Solved Box-QP Instances
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Joint work with
Andrea Lodi and Giulia Zarpellon
École Polytechnique de Montréal, Canada

Learning a Classification of Mixed-Integer Quadratic
Programming Problems
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What can ML do for (Integer) Optimization?

A fast growing literature has started to appear in the last 5 to 10 years on the
use of Machine Learning techniques to help Optimization, especially MIP
solvers. Among the first in these series, the papers on tuning MIP solvers.

[Hoos et al. (2010+)]
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What can ML do for (Integer) Optimization?

A fast growing literature has started to appear in the last 5 to 10 years on the
use of Machine Learning techniques to help Optimization, especially MIP
solvers. Among the first in these series, the papers on tuning MIP solvers.

[Hoos et al. (2010+)]

ML has, of course, started to be used within Constraint Programming as well,
including Neural Networks and Decision Trees.

[Lombardi & Milano (2015+)]

MIP solvers are complex software objects implementing a large variety of
algorithmic approaches. Strategic decisions on how to combine those
approaches in the most effective way have to be taken over and over. Such
decisions are taken heuristically, often breaking ties in architecture-dependent
ways, thus showing the heuristic nature of MIP implementations.

[Lodi (2012)]
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What can ML do for (Integer) Optimization?

A fast growing literature has started to appear in the last 5 to 10 years on the
use of Machine Learning techniques to help Optimization, especially MIP
solvers. Among the first in these series, the papers on tuning MIP solvers.

[Hoos et al. (2010+)]

ML has, of course, started to be used within Constraint Programming as well,
including Neural Networks and Decision Trees.

[Lombardi & Milano (2015+)]

MIP solvers are complex software objects implementing a large variety of
algorithmic approaches. Strategic decisions on how to combine those
approaches in the most effective way have to be taken over and over. Such
decisions are taken heuristically, often breaking ties in architecture-dependent
ways, thus showing the heuristic nature of MIP implementations.

[Lodi (2012)]

ML can help systematize the process that leads to take these decisions,
especially when a large quantity of data can be collected.
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Variable selection in Branch and Bound

Branch-and-Bound algorithm (B&B):

most widely used procedure for solving (Mixed-)Integer Programming
problems

implicit enumeration search, mapped into a decision tree
leave (at least) two big choices:

1. How to split a problem into subproblems (variable selection)
2. Which node/subproblem to select for the next exploration
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. . . decisions play a key role for the algorithm efficiency!

as of today, decisions are made heuristically and empirically evaluated

there are good branching strategies, but usually very costly
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Variable selection in Branch and Bound

Branch-and-Bound algorithm (B&B):

most widely used procedure for solving (Mixed-)Integer Programming
problems

implicit enumeration search, mapped into a decision tree
leave (at least) two big choices:

1. How to split a problem into subproblems (variable selection)
2. Which node/subproblem to select for the next exploration

. . . decisions play a key role for the algorithm efficiency!

as of today, decisions are made heuristically and empirically evaluated

there are good branching strategies, but usually very costly

Ultimate goal

Use ML to learn an activation function that can be adopted as approximation
/ prediction of a good B&B strategy, ideally with a low computational cost.

[Alvarez, Wehenkel & Louveaux (2016), Khalil, Le Bodic, Song, Nemhauser & Dilkina
(2016)]
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MIQPs classification

We consider Mixed-Integer Quadratic Programming (MIQP)

min
1

2
xTQx + cTx

Ax = b

xi ∈ {0, 1} ∀ i ∈ I

l ≤ x ≤ u

(2)

where Q = {qij}i ,j=1...n ∈ Rn×n is a real symmetric matrix, either convex or
nonconvex, and all integer variables are binary.
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MIQPs classification

We consider Mixed-Integer Quadratic Programming (MIQP)

min
1

2
xTQx + cTx

Ax = b

xi ∈ {0, 1} ∀ i ∈ I

l ≤ x ≤ u

(2)

where Q = {qij}i ,j=1...n ∈ Rn×n is a real symmetric matrix, either convex or
nonconvex, and all integer variables are binary.

Depending on the problems’ structure, we can tackle them in different ways:

Q � 0: perform NLP based B&B (or Outer Approximation algorithms)

Q � 0: depending on variables’ type,
pure 0-1: transform into either a convex MIQP or into a MILP (i.e.,
linearize it)
mixed: perform Q−space reformulation/relaxation, run Global
Optimization algorithms (Spatial B&B)
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MIQPs classification (cont.d)

The linearization approach seems beneficial also for the convex case, both for
pure 0-1 and mixed problems. However, is linearizing always the best choice?

“[. . . ] when one looks at a broader variety of test problems the decision to
linearize (vs. not linearize) does not appear so clear-cut.2”

2Fourer B. Quadratic Optimization Mysteries, Part 2: Two Formulations.
http://bob4er.blogspot.com/2015/03/quadratic-optimization-mysteries-part-2.html
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Exploit ML predictive machinery to understand whether it is favorable to
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MIQPs classification (cont.d)

The linearization approach seems beneficial also for the convex case, both for
pure 0-1 and mixed problems. However, is linearizing always the best choice?

“[. . . ] when one looks at a broader variety of test problems the decision to
linearize (vs. not linearize) does not appear so clear-cut.2”

Exploit ML predictive machinery to understand whether it is favorable to
linearize the quadratic part of the MIQP or not

Learn an offline classifier predicting the most suited resolution approach
within IBM-CPLEX framework (qtolin linearization switch parameter)

Gain theoretical insights about which features of the MIQPs most affect
the prediction

[Bonami, Lodi, Zarpellon (2017)]

2Fourer B. Quadratic Optimization Mysteries, Part 2: Two Formulations.
http://bob4er.blogspot.com/2015/03/quadratic-optimization-mysteries-part-2.html

50 ©2017 IBM Corporation



MIQPs classification - Dataset generation

. . . traditional benchmark sets are too small for learning!
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MIQPs classification - Dataset generation

. . . traditional benchmark sets are too small for learning!

We define and implement a generator of MIQP instances, spanning a variety
of structural parameters and optimization components.

(I) Objective function data generation: real symmetric matrices are
generated via the MATLAB function

Q = sprandsym(size, density, eigenvalues)

(II) Variables’ type definition: binary/continuous variables are added to the
problems with respect to the sign of Q entries, in different proportions

(III) Constraints generation: different constraints sets are added accordingly to
the type of variables of the problem (e.g., cardinality, simplex,
multi-dimensional knapsack)
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MIQPs classification - Dataset generation

. . . traditional benchmark sets are too small for learning!

We define and implement a generator of MIQP instances, spanning a variety
of structural parameters and optimization components.

(I) Objective function data generation: real symmetric matrices are
generated via the MATLAB function

Q = sprandsym(size, density, eigenvalues)

(II) Variables’ type definition: binary/continuous variables are added to the
problems with respect to the sign of Q entries, in different proportions

(III) Constraints generation: different constraints sets are added accordingly to
the type of variables of the problem (e.g., cardinality, simplex,
multi-dimensional knapsack)

Dataset of 2300 instances, three types of MIQPs (0-1 convex, 0-1
nonconvex, mixed convex)

Plan to compare with traditional benchmark libraries for test/extensions
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MIQPs classification - Features design

We define a set of 23 features referring to an MIQP instance, and we divide
them into two main blocks:
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MIQPs classification - Features design

We define a set of 23 features referring to an MIQP instance, and we divide
them into two main blocks:

Static features describe the mathematical characteristics of the instance,
in terms of

variables - e.g., number, types, presence in constraints and objective
constraints - e.g., coefficients and variables presence
quadratic objective function - e.g., coefficients, variables presence,
sparsity, spectral properties

They are extracted via CPLEX/Python before any solving (pre)process
takes place.
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MIQPs classification - Features design

We define a set of 23 features referring to an MIQP instance, and we divide
them into two main blocks:

Static features describe the mathematical characteristics of the instance,
in terms of

variables - e.g., number, types, presence in constraints and objective
constraints - e.g., coefficients and variables presence
quadratic objective function - e.g., coefficients, variables presence,
sparsity, spectral properties

They are extracted via CPLEX/Python before any solving (pre)process
takes place.

Dynamic features describe the initial behavior with respect to different
resolution methods.

e.g., bounds and solution times at the root node

They are extracted from the early stages of the optimization, after the
preprocessing and the resolution of the root node relaxation.
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MIQPs classification - Labeling procedure

One of three different labels among {L,NL,T} can be assigned to an MIQP
instance, describing the winner between linearize, not-linearize or the case of a
tie of the two methods.
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MIQPs classification - Labeling procedure

One of three different labels among {L,NL,T} can be assigned to an MIQP
instance, describing the winner between linearize, not-linearize or the case of a
tie of the two methods.

Each problem of the dataset is run with timelimit of 1h, for 5 different random
seeds, with qtolin on and off.

To address solvability / consistency issues, we perform

Solvability check, to discard never-solved instances

Seed consistency check on each seed, to discard unstable instances w.r.t.
the found upper and lower bounds

Global consistency check on global best upper and lower bounds, to
discard unstable instances

Running time is the ultimate compared measure, assessing the final label for
each example.
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MIQPs classification - Learning experiments

Instances, features and labels give a dataset ready for supervised learning:

{(xk , yk )}k=1..N where xk ∈ Rd , y ∈ {L,NL,T} for N MIQPs

54 ©2017 IBM Corporation



MIQPs classification - Learning experiments

Instances, features and labels give a dataset ready for supervised learning:

{(xk , yk )}k=1..N where xk ∈ Rd , y ∈ {L,NL,T} for N MIQPs

Multiclass classifiers such as

Support Vector Machines (nonlinear RBF kernel) (SVM)

and ensemble methods based on Decision Trees (more interpretable than
Neural Networks), such as

Random Forests (RF)

Extremely Randomized Trees (EXT)

Gradient Tree Boosting (GTB)
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MIQPs classification - Learning experiments

Instances, features and labels give a dataset ready for supervised learning:

{(xk , yk )}k=1..N where xk ∈ Rd , y ∈ {L,NL,T} for N MIQPs

Multiclass classifiers such as

Support Vector Machines (nonlinear RBF kernel) (SVM)

and ensemble methods based on Decision Trees (more interpretable than
Neural Networks), such as

Random Forests (RF)

Extremely Randomized Trees (EXT)

Gradient Tree Boosting (GTB)

Methodology: follow ML best practices to avoid overfitting

Training phase to optimize parameters (1725 instances)

k-fold cross validation and grid search for hyper-parameters selection

Test phase to assess classifiers’ performance (575 instances)

Main implementation tool: scikit-learn library.
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MIQPs classification - Nutshell analysis

Before learning, look into the dataset! In a nutshell:

Take care of unbalanced data in the learning procedure

Can some trends already been recognized w.r.t. different problem types?

More (statistical) analyses on features and data distribution
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MIQPs classification - Some results

Classifiers perform well with respect to traditional classification measures

Multiclass - All features

SVM RF EXT GTB

Accuracy 0.85 0.89 0.84 0.87
Precision 0.82 0.85 0.81 0.85
Recall 0.85 0.89 0.84 0.87
F1 score 0.83 0.87 0.82 0.86
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MIQPs classification - Some results

Classifiers perform well with respect to traditional classification measures

Multiclass - All features

SVM RF EXT GTB

Accuracy 0.85 0.89 0.84 0.87
Precision 0.82 0.85 0.81 0.85
Recall 0.85 0.89 0.84 0.87
F1 score 0.83 0.87 0.82 0.86

Top 5 - Features importance scores:

difference of lower bounds found by L and NL at root node (dynamic ft.)

difference of root node resolution times (dynamic ft.)

value of smallest nonzero eigenvalue

a measure of “diagonal dominance”, computed as 1

n

∑n

i=1
(|qii | −

∑
j 6=i |qij |)

spectral norm of Q, i.e., ‖Q‖ = maxi |λi |
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MIQPs classification - Learning settings

Simplify the Multiclass - All features framework by considering

Binary setting: remove all tie cases
How relevant are ties with respect to the question L vs. NL?

Classification measures are overall improved, RF is still best performing.

Static features setting: remove dynamic features
How does the prediction change without information at root node?

Classification is slightly deteriorated, but overall coherent with the original
one. The new best performing algorithm is SVM.
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MIQPs classification - Learning settings

Simplify the Multiclass - All features framework by considering

Binary setting: remove all tie cases
How relevant are ties with respect to the question L vs. NL?

Classification measures are overall improved, RF is still best performing.

Static features setting: remove dynamic features
How does the prediction change without information at root node?

Classification is slightly deteriorated, but overall coherent with the original
one. The new best performing algorithm is SVM.

Binary - Static features setting, simplified in labels and features
Performance is balanced between improvement and deterioration, with
SVM as best algorithm.
Static features about Q spectrum are the top ones.

What is the best learning setting to integrate predictions and solver?
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MIQPs classification - Optimization scores

We need to evaluate classifiers’ performance in optimization terms, and
quantify the gain with respect to CPLEX default strategy (DEF)

For each example, select the runtime corresponding to the predicted label
(L, NL, T) to build a times vector tclf for each classifier clf and DEF

tbest (tworst) contains times corresponding to the correct (wrong) labels
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We need to evaluate classifiers’ performance in optimization terms, and
quantify the gain with respect to CPLEX default strategy (DEF)

For each example, select the runtime corresponding to the predicted label
(L, NL, T) to build a times vector tclf for each classifier clf and DEF

tbest (tworst) contains times corresponding to the correct (wrong) labels

σclf Sum of predicted runtimes: sum over times in tclf

Nσclf Normalized time score: shifted geometric mean of times in tclf ,
normalized between best and worst cases to get a score ∈ [0, 1]
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MIQPs classification - Optimization scores

We need to evaluate classifiers’ performance in optimization terms, and
quantify the gain with respect to CPLEX default strategy (DEF)

For each example, select the runtime corresponding to the predicted label
(L, NL, T) to build a times vector tclf for each classifier clf and DEF

tbest (tworst) contains times corresponding to the correct (wrong) labels

σclf Sum of predicted runtimes: sum over times in tclf

Nσclf Normalized time score: shifted geometric mean of times in tclf ,
normalized between best and worst cases to get a score ∈ [0, 1]

SVM RF EXT GTB DEF

σclf /σbest 1.49 1.31 1.43 1.35 5.77
σworst/σclf 7.48 8.49 7.81 8.23 1.93
σDEF/σclf 3.88 4.40 4.04 4.26 −

Nσclf 0.98 0.99 0.98 0.99 0.42
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MIQPs classification - CPLEX partial testbed

Preliminary experiments on partial CPLEX internal testbed (175 instances),
used as new test set for classifiers trained on the synthetic data.

Very different distribution of features, problem types and labels: T is the
majority class, with very few NL

All classifiers perform very poorly in terms of classification measures (and
most often a T is predicted as NL), but . . .
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MIQPs classification - CPLEX partial testbed

Preliminary experiments on partial CPLEX internal testbed (175 instances),
used as new test set for classifiers trained on the synthetic data.

Very different distribution of features, problem types and labels: T is the
majority class, with very few NL

All classifiers perform very poorly in terms of classification measures (and
most often a T is predicted as NL), but . . .

. . . performance is not bad in optimization terms:

SVM RF EXT GTB

σclf /σbest 2.55 2.30 1.72 2.91
σworst/σclf 2.00 2.22 2.96 1.75

Nσclf 0.75 0.90 0.91 0.74

Given the high presence of ties, runtimes for L and NL are most often
comparable, so the loss in performance is not dramatic.
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MIQPs classification - Going further

Directions for ongoing and future research:

Analyze other benchmark datasets, e.g., QPLIB, to understand how
representative the synthetic data is of commonly used instances, and
enlarge the current training set

Identify the best learning scenario in order to successfully integrate
prediction and solver

Define a custom loss function to train classifiers, to get a prediction
tailored on the optimization aspects and the solver’s performance as well
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materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you
will result in any specific sales, revenue growth or other results.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon
many factors, including considerations such as the amount of multiprogramming in the user’s job stream, the
I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given
that an individual user will achieve results similar to those stated here.

IBM, the IBM logo, CPLEX and SPSS are trademarks of International Business Machines Corporation in the
United States, other countries, or both.

Intel, Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company,
product, or service names may be trademarks or service marks of others.
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