A MATHEURISTIC FOR THE RAPID TRANSIT NETWORK DESIGN PROBLEM WITH ELASTIC DEMAND

Alicia De Los Santos¹, David Canca², Gilbert Laporte³ and Juan Antonio Mesa⁴

¹University of Cordoba, deparment of Statistic and Operational Research <u>aliciasantos@uco.es</u> ²University of Seville, Deparment of Industrial Engineering and Management Science <u>dco@us.es</u> ³ CIRRELT and HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7, <u>gilbert.laporte@cirrelt.ca</u> ²University of Seville, Deparment of Applied Mathematic <u>jmesa@us.es</u>

VIII International Workshop on Locational Analysis and Related Problems 2017

Rapid Transit System (RTS)

Metro of Seville

Wuppertal monorail (Germany)

Light metro of Oporto

IWLARP, Segovia 27-29 Sep

Transportation line planning process

IWLARP, Segovia 27-29 Sep

THE PROBLEM

A matheuristic for the Rapid Transit Network Design Problem with elastic demand

The problem

IWLARP, Segovia 27-29 Sep

The problem

IWLARP, Segovia 27-29 Sep

The problem

IWLARP, Segovia 27-29 Sep

Figure 1: Integrated Network Design and Line Planning.

IWLARP, Segovia 27-29 Sep

Previous works

- D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. A General rapid network design, line planning and fleet investment integrated model. *Annals of Operational Research*
- D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Computers & Operations Research. 78, pp. 1 - 14. 2017.
- D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. The railway network design, line planning and capacity problem: An adaptive large neighborhood search metaheuristic. Advances in Intelligent Systems and Computing. pp. 1 - 22. 2017.

D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. A General rapid network design, line planning and fleet investment integrated model. *Annals of Operational Research*

IWLARP, Segovia 27-29 Sep

Variables

I. Design

II. Flow

III. Headway and frequency

D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Computers & Operations Research. 78, pp. 1 - 14. 2017

- Binary assignment model (flow: binary variables)
- The passenger only can consider one path in the network
- We propose a metaheuristic ALNS for solving the problem.
- We compare the mathematical model againts the ALNS on small instances
- We solve the problem on a real life network using the ALNS.

D. Canca, A. De-Los-Santos, G. Laporte and J.A. Mesa. The railway network design, line planning and capacity problem: An adaptive large neighborhood search metaheuristic. Advances in Intelligent Systems and Computing. pp. 1 - 22. 2017.

• We use a new utility function considering prices of time

$$U_w^{RRT} = \eta + \beta_{tt} \cdot u_w^{RRT,tt} + \beta_{tr} \cdot u_w^{RRT,tr} + \beta_{tw} \cdot u_w^{RRT,tw}, \ w \in W$$

PROBLEM DESCRIPTION

Original problem in which flow variables are continuos
 Several paths, for a same OD-pairs it's possible
 Utility function considering value of time

II. Metric and demand

Variables

I. Design

II. Flow

III. Headway and frequency

A matheuristic for the Rapid Transit Network Design Problem

$$\begin{array}{l} \mbox{Lines} \\ \mbox{Design} \\ \mbox{constraints} \end{array} \begin{array}{l} h_{\ell} + \sum_{ij \in E} x_{ij}^{\ell} = \sum_{i \in N} y_{i}^{\ell}, \ \ell \in \mathcal{L} \\ \ell_{\min} h_{\ell} \leq \sum_{\{i,j\} \in E} x_{ij}^{\ell} \leq \ell_{\max} h_{\ell}, \ \ell \in \mathcal{L} \\ \sum_{i \in B} \sum_{j \in B} x_{ij}^{\ell} \leq |B| - 1, \ B \subseteq N, \ |B| \geq 2, \ \ell \in \mathcal{L} \end{array} \end{array} \begin{array}{l} \mbox{Line} \\ \mbox{Sub-tour} \\ \mbox{elimination} \end{array}$$

A matheuristic for the Rapid Transit Network Design Problem

A matheuristic for the Rapid Transit Network Design Problem

$$\begin{split} & \underset{w_{w}^{RRT,tt}}{\text{Travel time constraints}} \\ & u_{w}^{RRT,tt} = (60/f_{w}^{RRT}\lambda) \sum_{\ell \in L} \sum_{(i,j) \in A(\ell)} f_{ij}^{w\ell} d_{ij}, \, w \in W \\ & u_{w}^{RRT,tr} = 1/f_{w}^{RRT} \sum_{\ell \in L} \sum_{\ell' \neq \ell} \sum_{i \in \ell \cup \ell'} f_{i}^{w\ell\ell'} (\varsigma_{\ell}' + uc_{i}), \, w \in W \\ & u_{w}^{RRT,wt} = 1/f_{w}^{RRT} \sum_{\ell \in L} \sum_{(w^{s},j) \in A(\ell)} \varsigma_{\ell} f_{w^{s}j}^{w\ell}/2, \, w \in W \\ \end{split}$$

$$U_w^{RRT} = \eta + \beta_{tt} \cdot u_w^{RRT,tt} + \beta_{tr} \cdot u_w^{RRT,tr} + \beta_{tw} \cdot u_w^{RRT,tw}, \ w \in W$$

$$FS_{\ell} = \lceil 120/(\varsigma_{\ell}\lambda) \sum_{\{i,j\}\in E} d_{ij} x_{ij}^{\ell} \rceil, \ \ell \in L$$

Fleet size constraints

Objective function

$$O_{NP} = O_{RV} - O_C = O_{RV} - O_{FOC} - O_{VOC} - O_{FA} - O_{BC}$$
 Net profit

$$\begin{split} O_{RV} &= \sum_{k=t_i}^{t_f-1} \frac{1}{e^{rk}} \left[(\xi + \eta) h_{year} \sum_{w \in W} g_w \cdot f_w^{RRTN} \right] \text{ Revenue} \\ O_{FOC} &= \sum_{k=t_i}^{t_f-1} \frac{1}{e^{rk}} \left[\sum_{\{i,j\} \in E} ORlc_{ij} x_{ij} + \sum_{i \in N} OStc_i y_i \right] \text{ Fixed cost} \\ O_{VOC} &= \sum_{k=t_i}^{t_f-1} \frac{1}{e^{rk}} \left[(h_{year} \cdot \lambda) \sum_{\ell \in \mathcal{L}} FS_\ell (\sum_{m \in M} c_{train}^m \delta_\ell^m) + c_{crew} \sum_{\ell \in \mathcal{L}} FS_\ell \right] \text{ Variable cost} \\ O_{FA} &= \sum_{k=t_i}^{t_f-1} \frac{1}{e^{rk}} \left[\frac{\chi}{(t_f - t_i)} \sum_{\ell \in \mathcal{L}} FS_\ell (\sum_{m \in M} I_{train}^m \delta_\ell^m) \right] \text{ Acquisition cost} \\ O_{BC} &= \frac{1}{t_f} \sum_{k=0}^{t_f-1} \frac{1}{e^{rk}} \left[\sum_{\{i,j\} \in E} c_{ij} x_{ij} + \sum_{i \in N} c_i y_i \right] \text{ Building cost} \end{split}$$

IWLARP, Segovia 27-29 Sep

THE MATHEURISTIC

□ Full linearized model

Define the mechanism in the matheuristic

Model linearization

Capacity constraints
$$\sum_{w \in W} f_{ij}^{w\ell} g_w \leq \psi_{\ell} \sum_{m \in M} C_{train}^m \cdot \delta_{\ell}^m, \ell \in \mathcal{L}, \{i, j\} \in E$$
Fleet size constraints
$$FS_{\ell} = \lceil 120/(\varsigma_{\ell}\lambda) \sum_{\{i,j\} \in E} d_{ij}x_{ij}^{\ell} \rceil, \ell \in L$$
Utility constraints
$$w_w^{RRT,tr} = (60/f_w^{RRT}\lambda) \sum_{\ell \in L} \sum_{(i,j) \in A(\ell)} f_{ij}^{w\ell} d_{ij}, w \in W$$
Modal split constraints
$$w_w^{RRT,wt} = 1/f_w^{RRT} \sum_{\ell \in L} \sum_{(w^s,j) \in A(\ell)} f_i^{w\ell'}(\varsigma_{\ell}' + uc_i), w \in W$$
Modal split constraints
$$f_w^{RRT,wt} = 1/f_w^{RRT} \sum_{\ell \in L} \sum_{(w^s,j) \in A(\ell)} \varsigma_{\ell} f_{w^sj}^{w\ell}/2, w \in W$$
Objective function
$$W_{W}^{RRT,wt} = 1/f_w^{RRT} \leq \frac{1}{1 + e^{(\beta(u_w^{ALT} - u_w^{RRT}))}}, w \in W$$

IWLARP, Segovia 27-29 Sep

Model linearization

Capacity constrains
$$\sum_{w \in W} f_{ij}^{w\ell} g_w \leq \psi_{\ell} \sum_{m \in M} C_{train}^m \cdot \delta_{\ell}^m, \ell \in \mathcal{L}, \{i, j\} \in E$$
Fleet size constraints
$$FS_{\ell} = \lceil 120/(\varsigma_{\ell}\lambda) \sum_{\{i,j\} \in E} d_{ij} x_{ij}^{\ell} \rceil, \ell \in L$$
Utility constraints
$$w_w^{RRT,tt} = (60/f_w^{RRT}\lambda) \sum_{\ell \in L} \sum_{(i,j) \in A(\ell)} f_{ij}^{w\ell} d_{ij}, w \in W$$
Modal split constraints
$$w_w^{RRT,wt} = 1/f_w^{RRT} \sum_{\ell \in L} \sum_{\ell' \neq \ell} \sum_{i \in U \cup \ell'} f_i^{w\ell'} (\varsigma_{\ell}' + uc_i), w \in W$$
Modal split constraints
$$f_w^{RRT,wt} = 1/f_w^{RRT} \sum_{\ell \in L} \sum_{(i,j) \in A(\ell)} \varsigma_{\ell} f_w^{w\ell}/2, w \in W$$
Objective function

IWLARP, Segovia 27-29 Sep

Capacity Constraints linearization

- Introduce new binary variables: γ_{ℓ}^{p}
- *fv* = {*fv_p*: *p* = 1,.., |*P*|} represents the set of feasibles frequencies

$$\psi_{\ell} = \sum_{p \in P} f v_p \cdot \gamma_{\ell}^p, \ \ell \in \mathcal{L}$$
$$\varsigma_{\ell} = \sum_{p \in P} \frac{60}{f v_p} \cdot \gamma_{\ell}^p, \ \ell \in \mathcal{L}$$
$$\sum_{p \in P} \gamma_{\ell}^p = 1, \ \ell \in \mathcal{L}$$

IWLARP, Segovia 27-29 Sep

$$\psi_{\ell} \cdot \delta_{\ell}^{m} = \sum_{p \in P} fv_{p} \cdot \gamma_{\ell}^{p} \cdot \delta_{\ell}^{m}, \ \ell \in \mathcal{L} \qquad \text{Two binary} \\ \text{variables}$$

$$\begin{aligned} \xi_p^{m\ell} &= \psi_\ell \cdot \delta_\ell^m, \ \ell \in \mathcal{L}, m \in M, p \in P \\ \delta_\ell^m &+ \gamma_p^\ell \leq 1 + \xi_p^{m\ell}, \ \ell \in \mathcal{L}, m \in M, p \in P \\ 2\xi_p^{m\ell} \leq \delta_\ell^m + \gamma_\ell^p, \ \ell \in \mathcal{L}, m \in M, p \in P \end{aligned}$$

Figure 2: Integrated Network Design and Line Planning solving scheme.

Solving a rapid transit network design problem

ALNS: Adaptive Large Neighborhood Search

Computational experiments

- We carried out several experiments using Java code and Gurobi 7.5.1
- We tested the matheuristic over small instances.
- We are testing the algorithm on a real life instance: Seville.
- We solve several scenarios for input parameters related to fares and values time.

Computational experiments

Parameters		
Name	Description	Value
$\hat{ ho}$	years to recover the purchase	20
h_{year}	number of years spent to build the network	10
ρ	number of operative hours per year	6935
m	model of train	463, 464, 465
ORC_{ij}	operating rail cost measured in \in per year	$6 \cdot 10^4$
OSC_i	operating station cost expressed in \in per year	$6\cdot 10^4$
c_i	building cost of station at node i $[\in]$	10^{6}
c_{ij}	building cost of link (i,j) $[\in]$	$20^6 \cdot d_{ij}$
c_{train}^m	operating cost of a train per kilometer $[\in/km]$	3, 3.1, 3.2
c_{crew}	per crew and year for each train m $[\in / year]$	$75 \cdot 10^3$
I_{train}	purchase cost of one train Civia in \in	$4.4, 5.2, 5.9\cdot 10^6$
K^m_{train}	capacity of each train (number of passengers)	$607,832,997\cdot 10^2$
N_{min}	lower bound on the number of nodes of each line	3
N_{max}	upper bound on the number of nodes of each line	9
${\cal H}$	Possible headways [min]	$\{3,4,5,6,10,12,15,20\}$
β^{tr}	Perceived value of time spent transferring in $[\in/\min]$	0.25
eta^{tw}	Perceived value of time spent for waiting at the origin station in $[\in/\min]$	0.25
β^{tt}	Perceived value of time spent for riding in train in $[\in/\min]$	0.083
$\mu + \eta$	fare plus subsidy	3.5

Profit Evolution

6. CONCLUSIONS AND FURTHER WORKS

- We have presented a mathematical programming program for the rapid transit network design.
- We have included a utility function considering values of time.
- We have proposed a new procedure which consists of a matheuristic considering a lineal mathematical model and the ALNS metaheuristic.
- □ We are going to test the matheuristic over real networks.

A matheuristic for the Rapid Transit Network Design Problem with elastic demand

THANK YOU!!