

Dynamic Programming State Variable : s = (k, i, t, C), with k target block, i stack of target block, t list of blocks above the target block, and C configuration of remaining blocks; Decision Variable : if τ is the uppermost block in sequence t, x indicates which stack block τ is moved to (D(s) is the set of all feasible values of x w.r.t. the current state s); State Transition Function : a function T such that s' = (k', i', t', C') is the state obtained by applying decision $x \in D(s)$ to the current state s, which is, s' = T(s, x); Functional Equation : DP "backward" functional equation

$$f(k, i, t, C) = \begin{cases} 1 + f(k+1, i', t', C), & t = \emptyset, \\ 1 + \min_{x \in D(k, i, t, C)} \{f(k, i, t \setminus \{\tau\}, C')\}, & t \neq \emptyset, \end{cases}$$

with $f(n, i, \emptyset, C) = 1$.

	N	Numerical Results									
	Bay	/ Size	ŀ	KH		CM		Coi	rridor		
	h	m	No.	$Time^{\dagger}$	No.	$Time^{\dagger}$	γ	δ	λ		
	3	3	7.1	0.1	5.4	0.10	0.00	1	4		
	3	4	10.7	0.1	6.5	0.10	0.00	1	4		
	3	5	14.5	0.1	7.3	0.10	0.00	1	4		
fan Voß	3	6	18.1	0.1	7.9	0.15	0.00	2	4		
0 Ste	3	7	20.1	0.1	8.6	0.10	0.01	2	4		
8	3	8	26.0	0.1	10.5	0.20	0.01	2	4		
	4	4	16.0	0.1	9.9	0.20	0.02	2	5		
	4	5	23.4	0.1	16.5	0.50	0.01	2	5		
	4	6	26.2	0.1	19.8	0.50	0.03	2	5	TXX/T	
	4	7	32.2	0.1	21.5	0.50	0.03	2	5	HAMBURG	

	Numerical Results										
	Bay	/ Size	ł	ΚH		CM	Co	rridor			
	h	\mathbf{m}	No.	Time [†]	No.	$Time^{\dagger}$	δ	λ			
	5	4	23.7	0.1	16.6	0.5	2	6			
tefan Voß	5	5	37.5	0.1	18.8	0.8	2	6			
5 0 0	5	6	45.5	0.1	22.1	0.8	2	6			
	5	7	52.3	0.1	25.8	1.43	1	7			
	5	8	61.8	0.1	30.1	1.46	1	6			
	5	9	72.4	0.1	33.1	1.41	1	6	(TOTAL OF		
	5	10	80.9	0.1	36.4	1.87	1	6	HAMBURG		

Redundancy Allocation Problem (RAP) Allocation of redundant components within series-parallel systems

m is the total number of components within the system r_{ij} is the reliability of component j within subsystem I g is an increasing function describing a capacity constraint Two different classes of problems: k=1 series-parallel systems, at least one k >1 $x_{ii} = 1$ indicates that component j of subsystem i is in the solution.

RAP:

$$\begin{array}{c|c}
\max & R = \prod_{i=1}^{n} \left(1 - \prod_{j=1}^{m_{i}} \left(1 - r_{ij} \right)^{x_{ij}} \right) \\
\text{s.t.} & g_{q}(\mathbf{x}) \leq b_{q} \\
\sum_{j=1}^{m_{i}} x_{ij} \geq k_{i} \\
\mathbf{x} \in \mathbb{B}^{m}
\end{array}$$

$$q = 1, \dots, Q$$

	R Op sv:	ed otima	uno I allo Is	dancy A	llocatio	n Problem (RAP) nponents within series-parallel
	No.	W	С	Best Found ^a	$Time^b$	You and Chen (2005)
	1	191	130	0.98681	2.93315	Computers & Operations Research
	2	190	130	0.98642	3.36518	
	3	189	130	0.98592	3.55760	10 172 100 0.07292 0.02475
	4	188	130	0.98538	3.07483	19 173 122 0.97383 2.03475 20 172 122 0.97383 5 2.03475
	5	187	130	0.98469	4.61933	20 172 123 0.97303 5.06500
	6	186	129	0.98418	3.31069	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	7	185	130	0.98350	4.73182	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	8	184	130	0.98299	4.17582	23 169 121 0.96929 4.58145
	9	183	129	0.98226	4.17857	24 168 119 0.96813 1.75531
	10	182	130	0.98152	2.07761	$25 \ 167 \ 118 \ 0.96634 \ 4.39054$
So.	11	181	129	0.98103	4.81956	$26 \ 166 \ 116 \ 0.96504 \ 2.45814$
lefan V	12	180	128	0.98029	4.06561	$27 165 117 0.96371 \qquad 4.32633$
S O	13	179	126	0.97950	3.34148	28 164 115 0.96242 3.00410
35	14	178	125	0.97840	2.83650	29 163 114 0.96064 5.04348
	15	177	126	0.97760	3.04934	$30 \ 162 \ 115 \ 0.95919 \ 1.68283$
	16	176	124	0.97669	1.08522	$31 \ 161 \ 113 \ 0.95803 \ 2.56656$
	17	175	125	0.97571	4.82758	$32 \ 160 \ 112 \ 0.95571 \ 2.07888$
	18	174	123	0.97493	4.71314	$33 \ 159 \ 110 \ 0.95456 \ 1.22496$
						a: Values reported are all global optimum.
						b: Wall-clock time measured in seconds.

	The DNA Sequencing Problem		
	Problem Formulation: Orienteering (\mathcal{NP} -l	hard)	
38 OStefan Voð	$\max z(OP) = \sum_{v_i \in V} p_i y_i$ s.t. $\sum_{v_j \in V \setminus \{v_i\}} x_{ij} = y_i, v_i \in V$ $\sum_{v_j \in V \setminus \{v_i\}} x_{ji} = y_i, v_i \in V$ $\sum_{(v_i, v_j) \in A} c_{ij} x_{ij} \leq c_{\max}$ $1 \leq u_i \leq m, v_i \in V$ $u_i - u_j + 1 \leq m (1 - x_{ij}), (v_i, v_j) \in I$ $x_{ij} \in \{0, 1\}, (v_i, v_j) \in A$ $u_i \in \mathbb{N}, v_i \in V$	(1) (2) (3) V (5) (6) (7)	TWT
	$egin{array}{cccc} x_{ij} & \in \{0,1\}, & (v_i,v_j) \in A \ u_i & \in \mathbb{N}, & v_i \in V \ 0 \leq y_i & \leq 1, & v_i \in V \end{array}$	(6) (7) (8)	HAMBURG

		Th	e DNA	Sequenc	ing Prob	olem					
	n	e	Match	[10 Deviation)] Optimal	Time [†]	Match	Di Deviation	NA-CM Optimal	Time [♯]	No. \mathbf{x}^i
	200	0.05	99.9 99.2	0.36 3 47	$\frac{39/40}{37/40}$	6.5	100 100	0.00	40/40	0.1	1
	400	0.05	99.2 99.2	4.68	$\frac{38/40}{36/40}$	23.9 30.8	100	0.00	$\frac{40/40}{40/40}$	$\frac{0.1}{19.8}$	3
	500	0.05	99.8 99.6	1.15	$\frac{39/40}{35/40}$	46.5	100	0.00	$\frac{40}{40}$	31.5 44.1	7
	600	0.05	98.0 98.0	7.71	$\frac{36/40}{32/40}$	80.9 91.6	99.3 99.0	1.4	$\frac{38/40}{37/40}$	92.2 118.3	15 14
© Stefan Voß	†: C #: C	PU (Fime or Fime or	n a Pentiu 1 a Pentiu	m 4, 2.20 m 4, 2.00	Hz and	d 512M d 2GB (B of RAM of RAM.		110.0	
4	Cor Bla cor	mpar zewi npute	ison of cz et al ed over	computati . [10] (Sou 40 instan	ional resu irce: Ger ces per c	ults on Bank d lass.	320 DN databas	VA sequen se). Averaç	ces from ge values	5	HAMBURG

Some new talks (Example): Local Branching (Fischetti, Lodi)

왂

The local branching framework

For a given positive integer parameter k, we define the *k*-OPT neighborhood $\mathcal{N}(\bar{x}, k)$ of \bar{x} as the set of the feasible solutions of (P) satisfying the additional local branching constraint:

$$\Delta(x,\bar{x}) := \sum_{j \in \overline{S}} (1-x_j) + \sum_{j \in \mathcal{B} \setminus \overline{S}} x_j \le k$$

where the two terms in left-hand side count the number of binary variables flipping their value (with respect to \bar{x}) either from 1 to 0 or from 0 to 1, respectively.

