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RED DE LOCALIZACION Y PROBLEMAS AFINES
MATHEURISTICS: Hybridizing
Metaheuristics and Mathematical
Programming
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Practice: great variety of discrete optimization problems
m hard, approximate modeling, imprecise data, ...
=heuristics

Ultimate goal: decision support concerning real-world problems

m many problems, which are diverse and change over time

m in practice we need easy-to-use application systems

—we need support for the development of corresponding software

2 ©Stefan Vol

Strategy: build reusable and robust software components for
heuristic search that embody the knowledge of research




New Real-world Problem

3 ©Stefan Vo

Solution

Discuss where we are and possible options for advancing metaheuristics.
Solvers have become so powerful that it pays to “MIP it,” but ...

There is not only just one method!

Examples:
“‘Evolutionary ...,” “Ants...” etc.
Tabu Search # Tabu Search
:  Pilot Method
Popmusic

Where could this community go next?
Overall: Give some simple (and hopefully yet effective) ideas; food for

thought. “




RED DE LOCALIZACION Y PROBLEMAS AFINES
By the Way:

Stefan Vol3 (university of Hamburg)

Metaheuristic and Optimization

=3

Coupling/Linking Interface

Solver in the role
~Subordinate optimization*

(continuous variables)

6  ©Stefan Vol




Simulation and Optimization

Solver in the role ,superordinate optimization®

Coupling/Linking interface

- i f = i
T T ]

DA At nlb{b .-~Q,|
LI A Ll y 7o T

Solver in the role
~Subordinate optimization®

7 ©Stefan Vo

. Optimization method
| Reaktime characterstc | | FAF A1

Matheuristics are made by the interoperation of metaheuristics and
mathematical programming (MP) techniques. An essential feature is the

exploitation in some part of the algorithms of features derived from the
mathematical model of the problems of interest, thus the definition "model-
based metaheuristics" appearing in the title of some events of the
conference series dedicated to matheuristics.

Special Issues on Matheuristics:
Journal of Heuristics, 15 (3), 2009
Annals of Information Systems, 10, 2009
Discrete Applied Mathematics, under review

8 ©Stefan Vol




Hybridization

9 ©Stefan Vol

Some method + Local search ?
Some method + Discrete event simulation ?
Some method + Some other method ?
e.g.: metaheuristic + metaheuristic ?
e.g.: metaheuristic + exact algorithm (e.g. B&C) ?
More ?7?

10 ©Stefan Vot
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Solver in the role

~Subordinate optimization*

(continuous variables)

I TT1
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POPMUSIC

[ Taillard/Vol3 (2002). In: C.C. Ribeiro
and P. Hansen (Eds.), Essays and
Surveys in Metaheuristics, Kluwer,
Boston (2002).

h

Pseudo Code

IneratedLocalSe

Feature Diagrams o
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Metanheurist n}]fCPI (disc EF[LE S

Coupling/Linking Interface
UL
Solver in the role
~Subordinate optimization*

} Objective function !
o = I |- ‘ —
Solution space / . Optimization method
felghborhoed (continuous variables)

mm l
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Move-based neighborhoods: Neighborhood search based on
topological concepts relating a given solution to similar
solutions via local changes or moves. (Example: small
homogeneous neighborhoods, very large scale
neighborhoods)

1. Define a neighborhood
2. Find efficient methods for its exploration

Method-based neighborhoods: The basic structure of a
neighborhood is determined by the needs and requirements of
the method used to search it.

1. Assume a given method.
2. Define a neighborhood that suits the method.

(Model-based neighborhoods)




The Corridor Method

15 © Stefan Vo

Sniedovich/VolR3 (2006)

The CM can be described as a local search method where
neighborhoods are relatively large sets whose structure and
size are compatible with the optimization method operating on it.

» The optimization problem under consideration is large.

* There is an optimization method for efficiently solving smaller
instances of the problem.

* |tis easy to generate (an initial) feasible solution.

* There is an efficient method for generating suitably large
neighborhoods around feasible solutions to the problem on
which the optimization method can be used.

16 ©Stefan Vo

M. Sniedovich, S. VoR. —
The Corridor Method: a Dynamic Pro%ramming Inspired Metaheuristic. IW[
Control and Cybernetics, 35(3):551-578, 2006.




An Application

Blocks Relocation

17 ©Stefan Vo

Example
(Container Terminal Altenwerder ( ), Hamburg, Germany)

18 © Stefan Vo




“Double Rail-Mounted Gantry Cranes (DRMG)”

]

10
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Backoffice

22 ©Stefan Vol

The Blocks Relocation Problem (BRP)

Given

A bay with n blocks which have to be
retrieved

Assumptions (Kim and Hong, 2006)
Retrieval order is given (1, 2, ..., n)
LIFO

Only the upper blocks may be moved
No pre-marshalling

Objective

Retrieval order such that the number of
relocations is minimized

Tier No.
A

4

3

2 3

1 2




The Blocks Relocation Problem (BRP)

Assumptions discussion

Assumptions (Kim and Hong, 2006)
Only the upper blocks may be moved
No pre-marshalling

Tier No. .
e Four relocations are needed to clear
e - the stacking area:
4 : Move block 2 first to stack 1.
3 6 4 - . .
3 But: This is forbidden by assumption.
12| |7 3
° With assumption: Six relocations
Lole 2t are needed.

>
1 2 3 Stack No.

The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

Tier No.
State variable: s = (k, i, t,C) 1

ke{1,...,n}is the block to be retrieved : : :
ie{1,... m}isthe stackinwhichthe | " Pl :

&
target block is found 3 \\\
NN

tis the list of blocks above the target
block

N
C is the configuration of the remaining 2 3 \\ 7
N

blocks

24 ©Stefan Vol

(Example: k= 1,i=2, t={5, 4}, and 1 2 1 6
C={{3,2},{7,6))) > Stack No.




The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

Tier No.

Decision variable: at each steptwo  |......... T e .
different cases may arise : : :
(i)the target block has no other blocks : : :
placed above, i.e.,t = & - retrieve the [~ :

N
target block
NN

(ii)at least one block is still above the

target block Q
Let t be the uppermost block in the 2 3 \ 7
AN

sequence t. The decision is about
identifying which stack x block t should

25 © Stefan Vol

1 2 1 6
be relocated to. Let us indicate with
D(s) the set of all feasible values of x > Stack No.
with respect to the current state 1 2 3

(Example: t=5 and D(s) = {1, 3}) ‘ IWI ‘

The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

Tier No.
State transition function T(s, x): A
Lets'= (K, i', t,C') be the state obtained by ~ [--reer- preseneens preeeaeens :
applying decision x € D(s) to the current : : :
state s. 4 :
s'=Ts,x | PR S

N
(i) t=:k'=k+1,i"is the stack in which 3 \\
block k+1 is currently located, t' is the list of N
blocks above k + 1 and C' = C is the Q
configuration of the remaining blocks 2 3 \ 7
(i) K" =k, i"=i, ' =t\ {r}, and C' depends on n\
the application of move x to block t (e.g.,

3

n Vo

L with respect to the figure let us suppose 1 2 1 6
¢ thatx=1->s"=T(s,1)=(1, 2, {4} ,C),
where C' = {{5, 3, 2}, {7, 6}}) > Stack No.
1 2 3

13



Dynamic Programming

State Variable : s = (/. 1,1, ('), with & target block,  stack of target block, 7 list of blocks above the target block, and '

configuration of remaining blocks;

Decision Variable : if 7 is the uppermost block in sequence 7, i indicates which stack block 7 is moved to ({5 ) is the set of all

feasible values of = w.rt. the current state s);

State Transition Function : a function 7' such that s — (k’. 4/, #/, C'} is the state obtained by applying decision - € (s to

the current state 5, which is, s’ = T(s,x);

Functional Equation : DP “backward” functional equation

L+ fk+1,i,t,0), t=0,

I+ min {f(k.i.f \ {'r}.(j-”)}. t 0,

reD(k,i,t,C)

f['l“ i1, C} =

with f(n, 1,0, C) = 1.

24
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Numerical Results

Numerical Results

Bay Size KH CM Corridor
h m | No. Time' | No. Timet ~ |4 A
3 3 7.1 0.1 5.4 {010 000 )1 4
3 4 10.7 0.1 6.5 0.10 0001 4
3 5 14.5 0.1 7.3 {010 000 )1 4
; 3 G 18.1 0.1 7.0 .15 0.00 | 2 4
2 3 T 20.1 0.1 5.6 (.10 001 |2 4
& 3 = 26.0 0.1 10.5 {020 001 | 2 4
4 4 16.0 0.1 0.9 (.20 0oz | 2 5
4 5 234 0.1 16.5 (.50 001 |2 5
4 G 26.2 0.1 198 (.50 0o | 2 5
4 T 32.2 0.1 215 (.50 0o | 2 5

15



Numerical Results

Bay Size KH CM Corridor
h m | No. Time' | No. Time' |4 A

i 5 4 23.7 0.1 16.6 0.5 2 6

; 5 5 a7.5 0.1 18.8 0.8 2 6

% 5 (5] 45.5 0.1 22.1 0.8 2 6

) 5 T 52.3 0.1 25.8 1.43 1 T
5 = G1.8 0.1 30.1 1.46 1 6
5 ] T2.4 0.1 33.1 1.41 1 6
5 10 =09 0.1 36.4 1.57 1 6

Response surface: 6 = f(h,m).

SIS SSSIS
TERIERBIISSI
S ettt

SRS s

eetede:
0::,0:0 285

58
S S
SSCIIISSSS 5
5

delta
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. 6
bay width (m) 6 bay height (h)




Future Research (Example)

33 ©Stefan Vo

Redundancy Allocation Problem (RAP)

Allocation of redundant components within series-parallel systems

m is the total number of components within the system

r; is the reliability of component j within subsystem |

g is an increasing function describing a capacity constraint

Two different classes of problems: k=1 series-parallel systems, at least one k >1
X; = 1 indicates that component j of subsystem i is in the solution.

max [ = H 1— H (1 —7y) "%
i=1 j=1
RAP: s.b. gq(X) < by g=1,....Q
inj‘zké i=1,...,n
3 =
x € B™

17



Redundancy Allocation Problem (RAP)

Optimal allocation of redundant components within series-parallel

No. W C  Best Found® Time” You and Chen (2005)
. 191 130 0.98631 203315 Computers & Operations Research
2190 130 0.98642 3.36518
3180 130 0.98592 3.55760 0 17 12 0073 -
4188 130 098538 3.07483 1 1ot o
BOI8T 130 0.98469 461933 o 11; oy 007103 4}3;1}2‘
6 186 120  0.98418 3.31069 s tes B Bt
7 185 130  0.98350 73152 22170 120 0.97076 416222
S 184 190 0.08200 17580 23169 121 0.96929 1.58145
: L9820 AT o1 101 : o
9 183 120 0.08226 4.17857 }r’ Ef HZ 33223 lzg’{;fl
10182 130 0.98152 2.07761 e e o I
s 11181 120 0.98103 4.81956 26 166116 0.96504 245814
. 27 165 117 0.96371 4.32633
12180 128  0.98029 4.06561 . 0
2 13 179 196  0.97950 2.34148 28 164 115 0.96242 3.00410
s . ' . 20 163 114 0.96064 5.04348
14 178 125 0.97840 2.83650 0162 115 005910 P,
15 177 126 0.97760 3.04934 a 1(;; 11:; U"Q‘,"SU;j ‘}',’ﬁﬁ,'ﬁ
16 176 124 0.97669 1.08522 B 100 112 005571 5 O7ess
1T 175 125 0.97571 4.82758 5 150 110 0'9‘:';:6 99106
I8 174 123 0.97493 4.71314 - 0 =2
a: Values reported are all global optimmm.
h: Wall-clock time measured in seconds.

Redundancy Allocation Problem (RAP)

Allocation of redundant components within series-parallel systems

36  ©Stefan Vo

T T T T T
05 1.0 20 50 100 200

time to target(secs)
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The DNA Sequencing Problem

A well studied problem in computational molecular biology is the DNA
sequencing problem. The goal is to determine the order in which
sequences of nucleotides appear in an unknown fragment of the DNA.

Modeling using the Orienteering problem (OP) mom

Z Z I::.jxi.? = [(sziJ

i=1 j=1

A value of & = 0 makes the inequality redundant and, therefore, corre-

sponds to eliminating the corridor, i.e., to solving the original OP. Growing
values of 0 generate tighter corridors around the incumbent. Finally, a
value of 6 = 1 generates the smallest possible corridor around the
incumbent. Such corridor can be seen as a measure of maximum diversity
allowed, in the sense that only solutions that share at least a certain
amount of similar features with the incumbent are considered.

38 ©Stefan Vo

Problem Formulation: Orienteering (N P-hard)
maxz(0P)= " p
V.;GV
5.1, Z Xij =¥ Vi€ v (1)
vEVL{v}
Z X =¥, ViE v {2}
eV v}
Z CiiXy < Cmax (3)
{viv)eA
1< =m, vieV (4)
vi—u+1 Em(l—x), (v, eV (5)
Xif = {Un 1} 1 {VJ" "‘}) €A {6}
uj eN, viel (7} IWI
S =1 weVv (8)

The DNA Sequencing Problem

19
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The DNA Sequencing Problem

51. Initialization
e Generation of incumbent solutions using Cross Entropy {'.rr’}

o If distance(7'. ) > 7, add 7' 1o Q.

§2. Corridor Method ({2, 4,4™)

® Add the corridor constraint and solve the resulting MIP problem.

s Stopping criteria of the MIP solver:

& maximum running time
& maximum number feasible solutions

s 7° is the best solution found in Né[?r’)

S3. Update(r', 4 4m)

e If 7¢ is better than 7', then set 7° as incumbent and go to 52.
s |f no sclution better than the incumbent has been found:

& enhance the corridor and go to S2.; or
e If corridor is too large, stop the corridor method and select another
incumbent from 2

40 © Stefan Vo

The DNA Sequencing Problem

Corridor Definition and Calibration

Dynamic corridor definition

m m . m m .
SO x> (1 —x;}) (1—x;) =én

=1 j=1 i=1 j=1

e 5[0.1]

Corridor Calibration

(i) improving solution is found within the corridor: 4 is unchanged
(ii) no improving solution is found within corridor:

(ii.a) if 0.0 = 8™, then § +— 0.04; else

(ii.b) restart algorithm using a different incumbent from 02

20



The DNA Sequencing Problem

Original DNA Fragment (Unknown)

«+ - TAAATCCTGTCCTCTCACCA: - -
A s s mRE R

- e ®

-

.

TCCTGTCCTC
CCTGTCCT

282882

T

DMNA Microarray:
Library of Oligos

Creation of Oligos of Length | (47)

From DNA Fragment

41 © Stefan Vol

S={o1.....0m}

Spectrum of a DNA fragment: set of oligonucleotides that hybridize with the DNA fragment

The DNA Sequencing Problem

DNA Sequencing Problem with Errors

Megative Error Pgsitive Error

[ essnnsssssns
e

= Pasitive Errors: inclusion into the spectrum of an oligo
that is not in the original sequence.

e« Megative Errors: exclusion from the spectrum of an oligo
that is in the original sequence.

The Optimization Problem
Given an unknown DNA fragment of length n and a spectrum S = {01, 02.....0m}, find:

42 © Stefan Vol

# the permutation of elements of 5, i.e., m(5) such that the maximum number of cligos from
5 is used without exceeding length n, ie,

« the permutation of oligos from 5 that has the maximum alignment score with the fragment.

21



The DNA Sequencing Problem

43 © Stefan Vol

Problem Formulation: Orienteering

O,
®
®

Linking Oligos
« o; =TAAATCCTGT

® ;= CCTGTCCTGT s 6= (V. A)

e V' set of nodes (oliges in 5)
Overlapping Degree Between o; and o;

foll d li ;
o; TAAAT| CCTGT ollowed by cligo o)
s p; =1 prize at each node
o CCTGT [CCTGT

® c;: inversely proportional to od(

DMA Sequencing as Orienteering Problem

o A= {v, v} =t ofarcs (oligos o;

07, 9;)

e n: total length of the DNA sequence

= odloi.0;) =5

ey

The DNA Sequencing Problem

44 © Stefan Vo

. [10] DNA-CM
~ |Match Deviation Optimal Time'[Match Deviation Optimal Time" No. x*
200 0.05| 99.9 0.36 39/40 6.5 100 0.00 40/40 0.1 1
0.20] 99.2 3.47 37/40 85 100 0.00 40/40 0.1 1
400 0.05] 99.2 4.68 38/40 23.9 | 100 0.00 40/40 1938 3
0.20] 99.2 3.47 36/40 30.8 | 100 0.00 40/40 21.7 3
500 0.05] 99.8 1.15 39/40 46.5 | 100 0.00 40/40 315 7
0.20] 99.6 1.85 35/40 53.6 | 99.8 0.15 39/40 441 10
600 0.05] 98.0 7.71 36/40 80.9 | 99.3 1.4 38/40 922 15
0.20] 98.0 9.19 32/40 91.6 | 99.0 2.7 37/40 1183 14

T: CPU Time on a Pentium 4, 2.2GHz and 512MB of RAM.
f: CPU Time on a Pentium 4, 2.0GHz and 2GB of RAM.

Comparison of computational results on 320 DNA sequences from
Blazewicz et al. [10] (Source: GenBank database). Average values
computed over 40 instances per class.

ey
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Conclusion

During our work related to Container terminals we found a
“nice” (simplified) problem which may be treated with
metaheuristics.

Idea: Try a new metaheuristic.
(Corridor method; Sniedovich and Vol3, 2006)

Better results compared to the best found in the literature.
Proof of concept (for the corridor method)?

(Embedding into current simulation studies for developing
strategies for the DRMG.)

45 © Stefan Vo

Remarks? Questions?

46 © Stefan Vo




Matheuristics2012

Fourth International vv"orkbl\op on Model-Based Metaheuristics

September 16 to 21, 2012 - Angra dos Reis, Rio de Janeiro, Brazil

© Stefan Vot

September 16 to 21, 2012 :: Angra dos Reis, Rio de Janeiro, Brazil

The Matheuristics warkshaop series is proposed as a primary forum faor researchers working on
exploiting mathematical programming techniques in a {meta)heuristic framework, granting to
mathematical programming approaches the problem robustness and time effectiveness which
characterize metaheuristics, or exploiting the mathematical pragramming model formulation in the
customization of a metaheuristic for specific or general problems.

47
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The Matheuristics’2012 workshop will be held at Portogalo Suite Hotel, located in Angra dos
Reis, Brazil, from September 16 to 21, 2012

Some new talks (Example):

Local Branching (Fischetti, Lodi)

The local branching framework

For a given positive integer parameter k, we define the k-OPT neighborhood N (Z, k) of T as
the set of the feasible solutions of (P) satisfying the additional local branching constraint:

Az, )= (1—z)+ > x,<k

= jeEBVE

where the two terms in left-hand side count the number of binary variables flipping their value
(with respect to E) either from 1 to O or from 0 to 1, respectively.

48 © Stefan Vol

o]
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Local Branching

A commonly used heuristic idea in MIP context is the so-called hard variable fixing or diving:

1. the solution of a continuous relaxation =" is “analyzed”;

2. some of its nonzero variables are heuristically rounded-up to the nearest integer (if
non-integer) and then fixed to this value;

3. the method is iterated until either a feasible solution is found or the problem is infeasible.

The obvious question related to this mechanism is however:

‘ How should one choose the actual variables to be fixed? ‘

The idea is simple. In a binary problem in which a current feasible solution Z is given, impose a
soft variable fixing constraint, fixing a relevant number of variables without losing the
possibility of finding good feasible solutions:

J=1 J=1

49 © Stefan Vo
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