
1

MATHEURISTICS: Hybridizing
Metaheuristics and Mathematical
Programming

Introduction: Metaheuristics
Some Main Parts:

The Corridor Method
An Application?
Conclusions and Outlook
(And then some new talks?)

Marco Caserta, Stefan Voß (University of Hamburg)

Moshe Sniedovich (University of Melbourne)

GRANADA, JUEVES 10 DE MAYO 2012
©

S
te

fa
n

V
oß

2

Introduction:
Practical Point of View

Practice: great variety of discrete optimization problems
hard, approximate modeling, imprecise data, ...

⇒heuristics

Ultimate goal: decision support concerning real-world problems
many problems, which are diverse and change over time
in practice we need easy-to-use application systems

⇒we need support for the development of corresponding software

Strategy: build reusable and robust software components for
heuristic search that embody the knowledge of research

2

©
S

te
fa

n
V

oß
3

?

??

Solution

New Real-world Problem Research

“This profession [OR]
has presently more
algorithms than
applications ...”

[Wolsey, 1979]

“No systems, no impact”
[Nievergelt, 1994]

©
S

te
fa

n
V

oß
4

What We Aim For in This Talk

Discuss where we are and possible options for advancing metaheuristics.
Solvers have become so powerful that it pays to “MIP it,” but …

There is not only just one method!
Examples:

“Evolutionary …,” “Ants…” etc.
Tabu Search ≠ Tabu Search
Pilot Method
Popmusic

Where could this community go next?
Overall: Give some simple (and hopefully yet effective) ideas; food for
thought.

3

By the Way:
“Tabu search has its antecedents in
methods designed to cross boundaries
of feasibility or local optimality
standardly treated as barriers, and to
systematically impose and release
constraints to permit exploration of
otherwise forbidden regions.”
(Glover/Laguna)

Stefan Voß (University of Hamburg)

©
S

te
fa

n
V

oß
6

Metaheuristic model (discrete variables)

Solver in the role
„subordinate optimization“

Optimization method

Coupling/Linking Interface

Solution space /
neighborhood

Objective function

Metaheuristic and Optimization

(continuous variables)

4

©
S

te
fa

n
V

oß
7

Simulation system / model

Solver in the role
„subordinate optimization“

Solver in the role „superordinate optimization“

Objective function,
(possibly

multicriteria)

Real-time characteristic

Optimization method

Optimization
method

Solution space /
neighborhood

Coupling/Linking interface

Coupling/Linking Interface

Solution space /
neighborhood

Objective function

Simulation and Optimization

©
S

te
fa

n
V

oß
8

Matheuristics are made by the interoperation of metaheuristics and
mathematical programming (MP) techniques. An essential feature is the
exploitation in some part of the algorithms of features derived from the
mathematical model of the problems of interest, thus the definition "model-
based metaheuristics" appearing in the title of some events of the
conference series dedicated to matheuristics.

Special Issues on Matheuristics:
Journal of Heuristics, 15 (3), 2009
Annals of Information Systems, 10, 2009
Discrete Applied Mathematics, under review

5

©
S

te
fa

n
V

oß
9

Hybridization

©
S

te
fa

n
V

oß
10

What does it mean: “Hybridizing” ?

Some method + Local search ?
Some method + Discrete event simulation ?
Some method + Some other method ?

e.g.: metaheuristic + metaheuristic ?
e.g.: metaheuristic + exact algorithm (e.g. B&C) ?

More ??

6

©
S

te
fa

n
V

oß
11

Metaheuristic model (discrete variables)

Solver in the role
„subordinate optimization“

Optimization method

Coupling/Linking Interface

Solution space /
neighborhood

Objective function

Metaheuristic and Optimization

(continuous variables)

©
S

te
fa

n
V

oß
12

Domain Analysis: Metaheuristics

POPMUSIC
Taillard/Voß (2002). In: C.C. Ribeiro
and P. Hansen (Eds.), Essays and
Surveys in Metaheuristics, Kluwer,
Boston (2002).

IteratedLocalSearch

S

NeighborSelection

N Diversification Ω

best positive

best first positive

random

return

lastbest

Feature DiagramsFeature Diagrams

PseudoPseudo CodeCode

7

©
S

te
fa

n
V

oß
13

Metaheuristic model (discrete variables)

Solver in the role
„subordinate optimization“

Optimization method

Coupling/Linking Interface

Solution space /
neighborhood

Objective function

Metaheuristic and Optimization

(continuous variables)

©
S

te
fa

n
V

oß
14

Move-based vs. Method-based Neighborhoods
(Paradigms?)

Move-based neighborhoods: Neighborhood search based on
topological concepts relating a given solution to similar
solutions via local changes or moves. (Example: small
homogeneous neighborhoods, very large scale
neighborhoods)

1. Define a neighborhood
2. Find efficient methods for its exploration

Method-based neighborhoods: The basic structure of a
neighborhood is determined by the needs and requirements of
the method used to search it.

1. Assume a given method.
2. Define a neighborhood that suits the method.

(Model-based neighborhoods)

8

©
S

te
fa

n
V

oß
15

The Corridor Method

©
S

te
fa

n
V

oß
16

The Corridor Method (CM) Sniedovich/Voß (2006)

The CM can be described as a local search method where
neighborhoods are relatively large sets whose structure and
size are compatible with the optimization method operating on it.

• The optimization problem under consideration is large.
• There is an optimization method for efficiently solving smaller

instances of the problem.
• It is easy to generate (an initial) feasible solution.
• There is an efficient method for generating suitably large

neighborhoods around feasible solutions to the problem on
which the optimization method can be used.

M. Sniedovich, S. Voß.
The Corridor Method: a Dynamic Programming Inspired Metaheuristic.
Control and Cybernetics, 35(3):551-578, 2006.

9

©
S

te
fa

n
V

oß
17

An Application

Blocks Relocation

©
S

te
fa

n
V

oß
18

Example
(Container Terminal Altenwerder (CTA), Hamburg, Germany)

10

IWI
HAMBURG

“Double Rail-Mounted Gantry Cranes (DRMG)”

DRMG

11

©
S

te
fa

n
V

oß
21

Backoffice

©
S

te
fa

n
V

oß
22

The Blocks Relocation Problem (BRP)

Given
A bay with n blocks which have to be
retrieved
Assumptions (Kim and Hong, 2006)
Retrieval order is given (1, 2, …, n)
LIFO
Only the upper blocks may be moved
No pre-marshalling
Objective
Retrieval order such that the number of
relocations is minimized

12

©
S

te
fa

n
V

oß
23

The Blocks Relocation Problem (BRP)

Assumptions discussion

Assumptions (Kim and Hong, 2006)
Only the upper blocks may be moved
No pre-marshalling

©
S

te
fa

n
V

oß
24

The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

State variable: s = (k, i, t,C)

k ∈ {1, . . . , n} is the block to be retrieved
i ∈ {1, . . . ,m} is the stack in which the
target block is found
t is the list of blocks above the target
block
C is the configuration of the remaining
blocks

(Example: k = 1, i = 2, t = {5, 4}, and
C = {{3, 2} , {7, 6}})

13

©
S

te
fa

n
V

oß
25

The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

Decision variable: at each step two
different cases may arise

(i)the target block has no other blocks
placed above, i.e., t = ∅ retrieve the
target block

(ii)at least one block is still above the
target block
Let τ be the uppermost block in the
sequence t. The decision is about
identifying which stack x block τ should
be relocated to. Let us indicate with
D(s) the set of all feasible values of x
with respect to the current state

(Example: τ = 5 and D(s) = {1, 3})

©
S

te
fa

n
V

oß
26

The Blocks Relocation Problem (BRP)

Dynamic Programming Formulation

State transition function T(s, x):
Let s′ = (k′, i′, t′,C′) be the state obtained by

applying decision x ∈ D(s) to the current
state s.

s′ = T(s, x)

(i) t = ∅: k′ = k + 1, i′ is the stack in which
block k+1 is currently located, t′ is the list of
blocks above k + 1 and C′ = C is the
configuration of the remaining blocks

(ii) k′ = k, i′ = i, t′ = t \ {τ}, and C′ depends on
the application of move x to block τ (e.g.,
with respect to the figure let us suppose
that x = 1 s′ = T(s, 1) = (1, 2, {4} ,C′),
where C′ = {{5, 3, 2} , {7, 6}})

14

©
S

te
fa

n
V

oß
27

Dynamic Programming

©
S

te
fa

n
V

oß
28

The Corridor

15

©
S

te
fa

n
V

oß
29

Numerical Results

©
S

te
fa

n
V

oß
30

Numerical Results

16

©
S

te
fa

n
V

oß
31

Numerical Results

©
S

te
fa

n
V

oß
32

Response surface: δ = f(h,m).

17

©
S

te
fa

n
V

oß
33

Future Research (Example)

©
S

te
fa

n
V

oß
34

m is the total number of components within the system
rij is the reliability of component j within subsystem I
g is an increasing function describing a capacity constraint
Two different classes of problems: k=1 series-parallel systems, at least one k >1
xij = 1 indicates that component j of subsystem i is in the solution.

Redundancy Allocation Problem (RAP)
Allocation of redundant components within series-parallel systems

18

©
S

te
fa

n
V

oß
35

Redundancy Allocation Problem (RAP)
Optimal allocation of redundant components within series-parallel
systems

You and Chen (2005)
Computers & Operations Research

©
S

te
fa

n
V

oß
36

Redundancy Allocation Problem (RAP)
Allocation of redundant components within series-parallel systems

19

©
S

te
fa

n
V

oß
37

The DNA Sequencing Problem

A well studied problem in computational molecular biology is the DNA
sequencing problem. The goal is to determine the order in which
sequences of nucleotides appear in an unknown fragment of the DNA.

Modeling using the Orienteering problem (OP)

A value of δ = 0 makes the inequality redundant and, therefore, corre-
sponds to eliminating the corridor, i.e., to solving the original OP. Growing
values of δ generate tighter corridors around the incumbent. Finally, a
value of δ = 1 generates the smallest possible corridor around the
incumbent. Such corridor can be seen as a measure of maximum diversity
allowed, in the sense that only solutions that share at least a certain
amount of similar features with the incumbent are considered.

©
S

te
fa

n
V

oß
38

The DNA Sequencing Problem

20

©
S

te
fa

n
V

oß
39

The DNA Sequencing Problem

©
S

te
fa

n
V

oß
40

The DNA Sequencing Problem

21

©
S

te
fa

n
V

oß
41

The DNA Sequencing Problem

©
S

te
fa

n
V

oß
42

The DNA Sequencing Problem

22

©
S

te
fa

n
V

oß
43

The DNA Sequencing Problem

©
S

te
fa

n
V

oß
44

The DNA Sequencing Problem

Comparison of computational results on 320 DNA sequences from
Blazewicz et al. [10] (Source: GenBank database). Average values
computed over 40 instances per class.

23

©
S

te
fa

n
V

oß
45

Conclusion

During our work related to Container terminals we found a
“nice“ (simplified) problem which may be treated with
metaheuristics.

Idea: Try a new metaheuristic.
(Corridor method; Sniedovich and Voß, 2006)

Better results compared to the best found in the literature.
Proof of concept (for the corridor method)?
(Embedding into current simulation studies for developing
strategies for the DRMG.)

©
S

te
fa

n
V

oß
46

Remarks? Questions?

24

©
S

te
fa

n
V

oß
47

http://w
w

w
.ic.uff.br/m

atheuristics2012

©
S

te
fa

n
V

oß
48

Some new talks (Example):
Local Branching (Fischetti, Lodi)

25

©
S

te
fa

n
V

oß
49

Local Branching

