Locating Capacitated Unreliable Facilities

M. Albareda-Sambola, M. Landete, J.F. Monge, and J.L. Sainz-Pardo

VI International Workshop on Locational Analysis and Related Problems November 2015

Outline

- 2 Modeling assumptions
- **3** Formulations and solutions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

4 Computational Results

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

What if facilities are capacitated?

Literature review 1: uncapacitated

L. Snyder.

Facility location under uncertainty: a review. *IIE Transactions*, 38(7):547–564, 2006.

J. R. O'Hanley, M. P. Scaparra, and S. García.

Probability chains: A general linearization technique for modeling reliability in facility location and related problems.

European Journal of Operational Research, 230:63-75, 2013.

O. Berman, D. Krass, and M. Menezes. Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns.

Omega, 41:766-779, 2013.

O. Berman, D. Krass, and M. Menezes. Locating facilities in the presence of disruptions and incomplete information. *Decision Sciences*, 40(4):845–868, 2009.

M. Albareda-Sambola, Y. Hinojosa, and J. Puerto. The reliable p-median problem with at-facility service. *European Journal of Operational Research*, 245:656–666, 2015.

Literature review 2: capacitated

D. Gade and E. Pohl. (2009)

Sample average approximation applied to the capacitated-facilities location problem with unreliable facilities. *J of Risk and Reliability*: 259–269.

N. Aydin and A. Murat.(2013)

A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem. *Int J Prod Econ*, 145:173–183.

Y. An, B. Zeng, Y. Zhang, and L. Zhao.(2014)

Reliable p-median facility location problem: two stage robust models and algorithms. *Transport Res B-Meth*, 64:54–72.

I. Espejo, A. Marín, and A. M. Rodríguez-Chía.(2015) Capacitated p-center problem with failre foresight. *EJOR*, 247:229–244.

N. Azad, H. Davoudpour, G. Saharidis, and M. Shiripour.(2014) A new model for mitigating random disruption risks of facility and transportation in supply chain network design. *Int J Adv Manuf Tech*, 70:1757–1774.

K. Lim., A. Bassamboo, S. Chopra, and M. Daskin.(2013) Facility location decisions with random disruptions and imperfect estimation. *M&SOM-Manuf Serv Op*, 15:239–249.

• Each candidate facility location $(i \in I)$:

- has a fixed opening cost f_i ,
- a capacity Q_i ,
- and can be reliable $(\in NF)$ or unreliable $(\in F)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Each candidate facility location $(i \in I)$:

- has a fixed opening cost f_i ,
- a capacity Q_i ,
- and can be reliable ($\in NF$) or unreliable ($\in F$).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Each customer $j \in J$:
 - has a demand h_j,
 - induces a cost *d_{ij}* if served from facility *i*.

• Each candidate facility location $(i \in I)$:

- has a fixed opening cost f_i ,
- a capacity *Q*_i,
- and can be reliable $(\in NF)$ or unreliable $(\in F)$.

- Each customer $j \in J$:
 - has a demand h_j,
 - induces a cost *d_{ij}* if served from facility *i*.
- Unreliable facility failures occur
 - with a probability q,
 - and independently.

• Each candidate facility location $(i \in I)$:

- has a fixed opening cost f_i ,
- a capacity *Q*_i,
- and can be reliable $(\in NF)$ or unreliable $(\in F)$.
- Each customer $j \in J$:
 - has a demand h_j,
 - induces a cost *d_{ij}* if served from facility *i*.
- Unreliable facility failures occur
 - with a probability q,
 - and independently.

■ A dummy facility models lost customers → penalty.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Failure(s)! And now?

If one facility fails and full reassignments are allowed:

CRLP

Failure(s)! And now?

If one facility fails and full reassignments are allowed:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...i.e., only if previous-level assignments failed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...i.e., only if previous-level assignments failed

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...i.e., only if previous-level assignments failed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Easy to implement.

Keeps failure effects local.

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...i.e., only if previous-level assignments failed

Easy to implement.

Keeps failure effects local.

Less flexible \longrightarrow maybe more expensive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 x_{ijr} : Facility *i* serves customer *j* at level r, r = 0, 1, 2, ...i.e., only if previous-level assignments failed

Easy to implement.

Less flexible \longrightarrow maybe more expensive

Capacity becomes more challenging.

CRLP

Failure(s)! And now?: Assignment levels

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What about scenarios with failures?

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- What about scenarios with failures?
 - Granted always? \Rightarrow Most often unfeasible

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- What about scenarios with failures?
 - Granted always? \Rightarrow Most often unfeasible
 - Granted if 1 facility fails? \longrightarrow Espejo et. al.'15

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- What about scenarios with failures?
 - Granted always? \Rightarrow Most often unfeasible
 - Granted if 1 facility fails? \longrightarrow Espejo et. al.'15
 - Uncapacitated backups \longrightarrow Aydin, Murat'13

Should be granted in regular conditions:

$$\sum_{j\in J}h_jx_{ij0}\leqslant Q_iy_i$$

- What about scenarios with failures?
 - Granted always? ⇒ Most often unfeasible
 - Granted if 1 facility fails? \longrightarrow Espejo et. al.'15
 - Uncapacitated backups → Aydin, Murat'13
 - US Small overloads might be assumed in emergency situations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Demand distribution at X for q = 0.2

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Demand distribution at X for q = 0.2

Limits on expected loads - LEL(V, γ)

Expected demands can exceed the capacities in at most γ facilities by, at most, V

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limits on expected loads - LEL(V, γ)

Expected demands can exceed the capacities in at most γ facilities by, at most, V

$$\sum_{j \in J} h_i \sum_{r \in R} q^r Y_{ijr} \leqslant Q_i y_i + \nu_i \qquad i \in I$$
$$\nu_i \leqslant V u_i \qquad j \in J$$
$$\sum_{i \in I} u_i \leqslant \gamma$$
$$\nu_i \geqslant 0 \qquad i \in I$$
$$u_i \in \{0, 1\} \qquad i \in I$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Expected overloads - E(X)

Expected overloads - E(X)

Far from linear!

Expected overloads - E(X)

Far from linear!

Resort to bounds/approximations

Bounding-bound expected overload- B(V)

Total expected overloads are Bbounded above by \boldsymbol{V}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bounding-bound expected overload- B(V)

Total expected overloads are Bbounded above by V

$$\begin{split} \sum_{s=1}^{r} \sum_{j \in J} h_j Y_{ijs} \leqslant Q_i + \nu_{ir} & \forall i \in I, r \in R \\ \lambda_{i1} = \nu_{i1} & \forall i \in I \\ \lambda_{ir} = \nu_{ir} - \nu_{ir-1} & \forall i \in I, r > 1 \\ \sum_{i \in F} \sum_{r>0} q^r (1-q) \lambda_{ir} + \sum_{i \in NF} \sum_{r>0} q^r \lambda_{ir} \leq V \\ \lambda_{ir}, \nu_{ir} \geqslant 0 & \forall i \in I, r \in R \end{split}$$

Bounding-estimate expected overload- LR(V)

Estimated total expected overloads are bounded above by V

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bounding-estimate expected overload- LR(V)

Estimated total expected overloads are bounded above by V

$$\lambda_{\bullet r} = \sum_{i \in I} \lambda_{ir} \qquad r \in \{1, \dots, 4\}$$

0.722844q $\lambda_{\bullet 1}$ + 0.335816q² $\lambda_{\bullet 2}$ + 0.233097q³ $\lambda_{\bullet 3}$ + 0.374673q⁴ $\lambda_{\bullet 4} \leqslant V$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Staggered capacities- $S(\beta)$

Capacities scaled by $\beta>1$ for unlikely needs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Staggered capacities- $S(\beta)$

Capacities scaled by $\beta>1$ for unlikely needs

$$\sum_{s=0}^{r} \sum_{j \in J} h_i x_{ijs} \leqslant \beta^r Q_i y_i \qquad i \in I, r \ge 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computational experience

- All formulations implemented in Cplex 11.0
- Experiments run in a PC with a 2.33 GHz Intel Xeon dual core processor, 8.5 GB of RAM
- 140 instances generated from 10 ORLIB *p*-median instances:

- $n \in \{20, 50\},\$
- $q \in 0.05, 0.10, 0.20,$
- $|NF| \in \{1, 16\}$ with two different relative costs
- Different formulation configurations (γ, V, β) .
- Disregarded r > 4.

Solution quality (0)

CRFLP - LEL

Solution quality-B(V)

CRFLP - B1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Solution quality-LR(V)

CRFLP - LR

Solution quality-S(β)

CRFLP - S

CPU times

		LEL		B1		LR		S		
п	q	V:1	$V:\infty$	V:3	V:6	V:3	V:6	eta : 1.1	β : 1.2	β : 1.3
		$\gamma: I $	$\gamma:2$							
20	.05	11.9	7.4	30.2	32.3	31.7	17.8	59.4	42.1	39.5
	.10	109.4	7.2	80.4	64.2	244.1	55.5	241.7	89.7	62.7
	.20	71.0	7.4	236.1	954.2	744.6	944.1	1252.7	344.4	49.8
50	.05	751.1	703.0	187.0	215.0	1152.6	1188.7	2514.9	2554.8	3607.0

Gràcies!

maria.albareda@upc.edu

