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has a fixed opening cost fi ,
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and can be reliable (∈ NF ) or unreliable (∈ F ).

Each customer j ∈ J:

has a demand hj ,
induces a cost dij if served from facility i .

Unreliable facility failures occur

with a probability q,
and independently.

A dummy facility models lost customers−→ penalty.
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j∈J
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What about scenarios with failures?

Granted always? ⇒ Most often unfeasible
Granted if 1 facility fails? −→ Espejo et. al.’15
Uncapacitated backups −→ Aydin, Murat’13

US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Should be granted in regular conditions:∑
j∈J

hjxij0 6 Qiyi

What about scenarios with failures?

Granted always? ⇒ Most often unfeasible
Granted if 1 facility fails? −→ Espejo et. al.’15
Uncapacitated backups −→ Aydin, Murat’13

US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Should be granted in regular conditions:∑
j∈J

hjxij0 6 Qiyi

What about scenarios with failures?

Granted always? ⇒ Most often unfeasible

Granted if 1 facility fails? −→ Espejo et. al.’15
Uncapacitated backups −→ Aydin, Murat’13

US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Should be granted in regular conditions:∑
j∈J

hjxij0 6 Qiyi

What about scenarios with failures?

Granted always? ⇒ Most often unfeasible
Granted if 1 facility fails? −→ Espejo et. al.’15

Uncapacitated backups −→ Aydin, Murat’13
US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Should be granted in regular conditions:∑
j∈J

hjxij0 6 Qiyi

What about scenarios with failures?

Granted always? ⇒ Most often unfeasible
Granted if 1 facility fails? −→ Espejo et. al.’15
Uncapacitated backups −→ Aydin, Murat’13

US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Should be granted in regular conditions:∑
j∈J

hjxij0 6 Qiyi

What about scenarios with failures?

Granted always? ⇒ Most often unfeasible
Granted if 1 facility fails? −→ Espejo et. al.’15
Uncapacitated backups −→ Aydin, Murat’13

US Small overloads might be assumed in emergency situations.



CRLP

Assumptions

Capacity constraints satisfaction

Demand distribution at X for q = 0.2

.

conf. 1 conf. 2 conf. 3
E( dem) 4 4 4
P(overload) 0.2 0.2 0.104
E(overload) 0.6 0.28 0.152

Expected values miss relevant information!



CRLP

Assumptions

Capacity constraints satisfaction

Demand distribution at X for q = 0.2

.

conf. 1 conf. 2 conf. 3
E( dem) 4 4 4
P(overload) 0.2 0.2 0.104
E(overload) 0.6 0.28 0.152

Expected values miss relevant information!



CRLP

Assumptions

Capacity constraints satisfaction

Demand distribution at X for q = 0.2

.

conf. 1 conf. 2 conf. 3
E( dem) 4 4 4
P(overload) 0.2 0.2 0.104
E(overload) 0.6 0.28 0.152

Expected values miss relevant information!



CRLP

Solutions

Limits on expected loads - LEL(V , γ)

Expected demands can exceed the capacities in at most γ facilities
by, at most, V

∑
j∈J

hi
∑
r∈R

qrYijr 6 Qiyi + νi i ∈ I

νi 6 Vui j ∈ J∑
i∈I

ui 6 γ

νi > 0 i ∈ I

ui ∈ {0, 1} i ∈ I
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demand at i according to ξ

−Qi
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Far from linear!
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Results

Computational experience

All formulations implemented in Cplex 11.0

Experiments run in a PC with a 2.33 GHz Intel Xeon dual
core processor, 8.5 GB of RAM

140 instances generated from 10 ORLIB p-median instances:

n ∈ {20, 50},
q ∈ 0.05, 0.10, 0.20,
|NF | ∈ {1, 16} with two different relative costs

Different formulation configurations (γ,V , β).

Disregarded r > 4.
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Results

CPU times

.

LEL B1 LR S
n q V : 1 V :∞ V:3 V:6 V:3 V:6 β : 1.1 β : 1.2 β : 1.3

γ : |I | γ : 2

20
.05 11.9 7.4 30.2 32.3 31.7 17.8 59.4 42.1 39.5
.10 109.4 7.2 80.4 64.2 244.1 55.5 241.7 89.7 62.7
.20 71.0 7.4 236.1 954.2 744.6 944.1 1252.7 344.4 49.8

50 .05 751.1 703.0 187.0 215.0 1152.6 1188.7 2514.9 2554.8 3607.0
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