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What if facilities are capacitated?
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Each candidate facility location (i € /):

m has a fixed opening cost f;,
m a capacity Q;,
m and can be reliable (€ NF) or unreliable (€ F).

m Each customer j € J:

m has a demand h;,
m induces a cost dj; if served from facility /.

Unreliable facility failures occur

m with a probability g,
m and independently.

A dummy facility models lost customers—> penalty.
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Failure(s)! And now?: Assignment levels

xjjr :Facility i serves customer j at level r,r =0,1,2,...

i.e., only if previous-level assignments failed

Easy to implement.
Keeps failure effects local.
Less flexible —> maybe more expensive

Capacity becomes more challenging.
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Capacity constraints satisfaction

m Should be granted in regular conditions:

> hixijo < Qi

jeJ

m What about scenarios with failures?
m Granted always? = Most often unfeasible
m Granted if 1 facility fails? — Espejo et. al.”15
m Uncapacitated backups — Aydin, Murat'13
US Small overloads might be assumed in emergency situations.
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Demand distribution at X for g = 0.2
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Capacity constraints satisfaction

Demand distribution at X for g = 0.2
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Expected values miss relevant information!
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Expected demands can exceed the capacities in at most v facilities
by, at most, V
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Expected overloads - E(X)
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demand at i according to &

m Far from linear!

m Resort to bounds/approximations
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Bounding-bound expected overload- B(V)

Total expected overloads are Bbounded above by V
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Bounding-estimate expected overload- LR(V)

Estimated total expected overloads are bounded above by V
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Staggered capacities- S(3)

Capacities scaled by 8 > 1 for unlikely needs
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Computational experience

All formulations implemented in Cplex 11.0

Experiments run in a PC with a 2.33 GHz Intel Xeon dual
core processor, 8.5 GB of RAM

m 140 instances generated from 10 ORLIB p-median instances:
m n € {20,50},

m g € 0.05,0.10,0.20,

m |NF| € {1,16} with two different relative costs

Different formulation configurations (v, V, /3).

Disregarded r > 4.



CRLP

Solution quality (0)

cost increases when
expected overload decreases
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Solution quality- LEL(V,7)
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Solution quality-B(V)

cost alternative model / cost basic model
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Solution quality-LR(V)
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Solution quality-S(3)
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CPU times

LEL B1 LR S

n q vV:1 V:oco V:3 V:6 V:3 V:6 p:11 | g:1.2 | B:1.3
Yol y:2
.05 11.9 7.4 30.2 323 31.7 17.8 59.4 42.1 39.5
20 | .10 | 109.4 7.2 80.4 64.2 244.1 55.5 241.7 89.7 62.7
.20 71.0 7.4 236.1 | 954.2 744.6 944.1 1252.7 | 3444 49.8
50 | .05 | 751.1 703.0 | 187.0 | 215.0 | 1152.6 | 1188.7 | 2514.9 | 2554.8 | 3607.0
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Gracies!
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