Locating new stations and road links on a road-rail network

Federico Perea Rojas-Marcos (UPV, Valencia)

International Workshop on Locational Analysis and Related Problems Barcelona, November 26 2015

<ロト <四ト <注入 <注下 <注下 <

Designing or extending railway networks is an important issue for many governments since trains:

- reduce traffic congestion.
- ② do not depend on petrol as much as road vehicles.
- safety.
- **④** ...

A railway network must be attractive for passengers, otherwise nobody will use it and all the (huge) investment will be wasted!

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

Steps in railway network design

When designing a railway network one should (among others):

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

르

- estimate potential trips (origin-destination matrix)
- esign the infrastructure: stations and tracks
- opropose lines
- Iine frequencies
- schedules
- crew assignment
- ☑ ...

Contents

- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

イロト イヨト イヨト イヨト

2 Two new stations

- Mathematical models
- Algorithms

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Table of contents

- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

2 Two new stations

- Mathematical models
- Algorithms

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

æ

Motivation

Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

크

Motivation

Figure 1: The Madrid-Barcelona line (solid line). The Camp de Tarragona station is 12 km away from the nearest large city, Tarragona. A road link (dotted line) joins these two points.

One station

Two new stations

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

< □ > < □ > < □ > < □ > < □ >

크

Input data

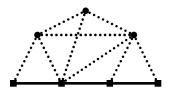


Figure 2: Input data to the problem. A set of cities (filled circles) and a set of train stations (filled squares) are joined by rail tracks (solid edges). Cities are linked among themselves and with the stations by means of road links (dotted edges).

One station

Two new stations

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

크

Solution

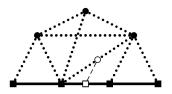


Figure 3: A possible solution to the problem depicted in Figure 2. The empty square represents the new station and the empty circle represents the new junction to be connected with the new station, by means of a new road link represented by dashed lines.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

< 日 > < 回 > < 回 > < 回 > < 回 > <

Ξ.

Input data

- Two train stations $T = \{n^1, n^k\} \subset \mathbb{R}^2$,
- A set of cities and junctions $R = \{n^2, ..., n^{k-1}\} \subset \mathbb{R}^2$,
- One rail link joining the two stations in T (set E_T),
- A set of road links E_R .
- $G = (R \cup T, E_R \cup E_T)$ is the road-rail network.
- n^1 is located at (0,0) and n^k is located at (b,0), b > 0.
- Let (n_1^i, n_2^i) be the coordinates of node $n^i \in R \cup T$.
- $A(E_R)$ and $A(E_T)$ are the arc sets associated to E_R and E_T .

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Input data

- If d_{ij} denotes the Euclidean length of arc (i, j), then $t_{ij} = \alpha_1 d_{ij}$ if $(i, j) \in A(E_R)$ and $t_{ij} = \alpha_2 d_{ij}$ if $(i, j) \in A(E_T)$, with $\alpha_1 > \alpha_2 > 0$. (the train is faster than the road!).
- $t_{ij} = \alpha_1 d_{ij} + \psi$ if the new station is located at road edge (i, j), where $\psi \ge 0$ is a congestion parameter.
- g_{pq} denotes the number of potential trips of O/D pair (p,q), and u_{pq}^{ROAD} denotes the traveling time using the road network only.
- A stop time β at the new station.
- Construction costs of new station and new junction are c_1 and c_2 , respectively.
- Construction cost of the new road edge proportional to Euclidean length, *τ*.
- Maximum budget equal to C_{\max} .

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The problem consists of choosing:

- a location for the new station x on E_T at node k + 1,
- a location for a new junction y on E_R at node k + 2,
- and building a road segment linking nodes k + 1 and k + 2, so that a certain objective function is optimized, without violating the budget constraint.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロン ・雪 ・ ・ ヨ ・

Table of contents

- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

2 Two new stations

- Mathematical models
- Algorithms

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

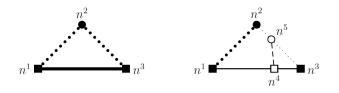
Solution strategy

- Trying to solve this problem by a unique MP model seems impossible.
- Fix the road link where the new junction will be.
- Solve all such $O(|E_R|)$ problems, and keep the best solution.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

ヘロト ヘヨト ヘヨト

Network extension



The new node set is $R \cup T \cup \{n^4, n^5\}$, and the new edge set is

$$E_{(2,3)} = \{(1,2), (1,4), (2,5), (3,4), (3,5), (4,5)\}.$$

Both the locations of the two new nodes and the lengths of the five new edges are variables.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Objective functions

- minimizing the total travel time,
- maximizing the number of travelers who will use the rail corridor (ridership),
- maximizing the number of users who are positively affected by the construction of the new station (winners).

According to some authors: "maximizing passenger attraction is the most appropriate objective to consider when planning transit systems".

< 口 > < 圖 > < 필 > < 필 > <

Ξ.

Variables

- $x_1 \in [0, b]$: the first coordinate of the new station.
- **2** $\lambda \in [0,1]$: the convex combination of (i^*, j^*) where the new junction is to be located.
- $\mathbf{3}$ y_1 and y_2 : coordinates of the location of the new junction.
- δ_{ij} define the travel times of the new arcs.
- Sinary variable f_{ij}^{pq} : O/D pair (p,q) uses arc (i,j).
- **(**) Binary variable v_{pq} : O/D pair (p,q) stops at the new station.
- u_{pq} is the travel time associated with O/D pair (p,q).

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

Some of these variables are now explicitly defined:

$$y_{1} = \lambda n_{1}^{i^{*}} + (1 - \lambda) n_{1}^{j^{*}},$$

$$y_{2} = \lambda n_{2}^{i^{*}} + (1 - \lambda) n_{2}^{j^{*}},$$

$$\delta_{i^{*},k+2} = (1 - \lambda) t_{i^{*}j^{*}}, \delta_{j^{*},k+2} = \lambda t_{i^{*}j^{*}},$$

$$\delta_{1,k+1} = \alpha_{2}x_{1}, \ \delta_{k,k+1} = \alpha_{2}(b - x_{1}),$$

$$\delta_{k+1,k+2} = \alpha_{1}\sqrt{(x_{1} - y_{1})^{2} + (0 - y_{2})^{2}},$$

$$\delta_{ij} = \delta_{ji}, \ \forall \ (i,j) \in A(E_{(i^{*},j^{*})} \setminus E_{R}) : i > j,$$

$$u_{pq} = \sum_{(i,j)\in A(E_{R} \setminus (i^{*},j^{*}))} t_{ij} f_{ij}^{pq} + \sum_{(i,j)\in A(E_{(i^{*},j^{*})} \setminus E_{R})} \delta_{ij} f_{ij}^{pq} + \beta v_{pq}, \ \forall \ (p,q)$$

Note that the definition of u_{pq} contains the quadratic terms $\delta_{ij} f_{ij}^{pq}$ which can easily be linearized. Unfortunately, the non-linearity in the definition of $\delta_{k+1,k+2}$ cannot be removed, which makes our model non-linear.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Budget constraint

$$c_1 + c_2 + \tau \sqrt{(x_1 - y_1)^2 + (0 - y_2)^2} \le C_{max}.$$
 (1)

This constraint ensures that the cost of building the new station c_1 plus the cost of building the new junction c_2 plus the cost of building the new road link does not exceed the available budget.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

<ロ> <同> <同> < 同> < 同> < 同> 、

æ

Constraints

$$\sum_{i:(i,p)\in A(E_{(i^*,j^*)})} f_{ip}^{pq} = 0, \ (p,q) \in W$$

$$\sum_{j:(p,j)\in A(E_{(i^*,j^*)})} f_{pj}^{pq} = 1, \ (p,q) \in W$$

$$\sum_{i:(i,q)\in A(E_{(i^*,j^*)})} f_{iq}^{pq} = 1, \ (p,q) \in W$$

$$\sum_{j:(q,j)\in A(E_{(i^*,j^*)})} f_{ij}^{pq} = 0, \ (p,q) \in W$$

$$\sum_{i:(i,r)\in A(E_{(i^*,j^*)})} f_{ir}^{pq} - \sum_{j:(r,j)\in A(E_{(i^*,j^*)})} f_{rj}^{pq} = 0, \ (p,q), \ r \notin \{p,q\}$$

$$(6)$$

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

New stop constraints

$$f_{1,k+1}^{pq} + f_{k+1,k}^{pq} + f_{k,k+1}^{pq} + f_{k+1,k}^{pq} - 1 \le v_{pq}, \ (p,q) \in W.$$
(7)

 $v_{pq} = 1$ if two rail arcs are used by the O/D pair (p, q), meaning that this O/D pair will incur a stop time at the new station n^{k+1} .

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

2

Objective 1

Minimizing the total travel time of the road-rail network:

minimize
$$z_{TTT} := \sum_{(p,q) \in W} g_{pq} u_{pq},$$
 (8)

Minimizing (8) subject to constraints (1) to ((7)) yields model $TTT_{(i^*,j^*)}$.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

Objective 2

Maximizing ridership. Assume that the proportion of travelers in $\left(p,q\right)$ who will use the rail corridor is given by

$$\psi(u_{pq}^{ROAD} - u_{pq}) = \frac{1}{1 + \gamma_1 e^{-\gamma_2(u_{pq}^{ROAD} - u_{pq})}},$$

where $\gamma_1, \gamma_2 > 0$ are two parameters to be calibrated depending on the instance. In this case the objective is

maximize
$$z_{RID} := \sum_{(p,q) \in W} g_{pq} \frac{1}{1 + \gamma_1 e^{-\gamma_2 (u_{pq}^{ROAD} - u_{pq})}}.$$
 (9)

Unfortunately, this function is neither convex nor concave, which makes the problem difficult to solve. Maximizing (9) subject to constraints (1) to (7) yields model $RID_{(i^*,j^*)}$.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

Objective 3

Maximizing the number of users who are positively affected by the construction of the new station and the new road link (winners, if $u_{pq} < u_{pq}^{ROAD}$. Define $s_{pq} = 1$ if $u_{pq} < u_{pq}^{ROAD}$. The objective is modeled as follows:

maximize
$$z_{WIN} := \sum_{(p,q) \in W} g_{pq} s_{pq}.$$
 (10)

Add the following constraints:

$$u_{pq} - u_{pq}^{ROAD} + \varepsilon \le (1 - s_{pq}), \ (p, q) \in W,$$
(11)

where ε is a small positive number. Maximizing (10) subject to (11) and constraints (1) to (7) yields model $WIN_{(i^*,j^*)}$.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・四ト ・ヨト ・ヨト

2

MINLP algorithm

 $\begin{array}{l} \textbf{Data: A road-rail network with two train stations.} \\ \textbf{Set } z_{TTT}^* = \infty \ ; \\ \textbf{for } (i,j) \in E_R \ \textbf{do} \\ & \quad \textbf{Set } t_{ij} = \alpha_1 d_{ij} + \psi. \\ & \quad \textbf{Solve } TTT_{(i,j)} \ \textbf{by means of a MINLP solver.} \\ & \quad \textbf{Let } x^{(i,j)}, y^{(i,j)} \ \textbf{be the resulting optimal locations for the new} \\ & \quad \textbf{station and the new junction, and let } z_{TTT}(i,j) \ \textbf{be the total travel} \\ & \quad \textbf{time of the corresponding network;} \\ & \quad \textbf{if } z_{TTT}(i,j) < z_{TTT}^* \ \textbf{then} \\ & \quad | \quad (x^*,y^*) = (x^{(i,j)},y^{(i,j)}), z_{TTT}^* = z_{TTT}(i,j) \\ & \quad \textbf{end} \\ & \quad \textbf{Set } t_{ij} = \alpha_1 d_{ij}. \\ & \quad \textbf{end} \\ & \quad \textbf{Result: Locations for the new station and the junction, } (x^*,y^*), \end{array}$

yielding a locally minimal total travel time z_{TTT}^* .

Algorithm 1: Local optimal algorithm for the location of a new station on the rail corridor and a junction on the road network minimizing the total travel time.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

(日) (圖) (E) (E) (E)

Enumerative algorithm

Data: A road-rail network with two train stations. Set $z_{TTT}^* = \infty$; for $(i, j) \in E_R$ do Set $t_{ii} = \alpha_1 d_{ii} + \psi$. Set $z_{TTT}(i, j) = \infty$: for feasible $\bar{x} \in F^x$ and $\bar{y} \in F^y(i, j)$ do Compute $z_{TTT}(\bar{x}, \bar{y})$ of the corresponding network; if $z_{TTT}(\bar{x}, \bar{y}) < z_{TTT}(i, j)$ then $(\bar{x}^{(i,j)}, \bar{y}^{(i,j)}) = (\bar{x}, \bar{y}), z_{TTT}(i, j) = z_{TTT}(\bar{x}, \bar{y})$ end end if $z_{TTT}(i, j) < z_{TTT}^*$ then $(\bar{x}^*, \bar{y}^*) = (\bar{x}^{(i,j)}, \bar{y}^{(i,j)}), z^*_{TTT} = z_{TTT}(i, j)$ end Set $t_{ii} = \alpha_1 d_{ii}$. end **Result**: Locations for the new station and the new junction (\bar{x}^*, \bar{y}^*) yielding a total travel time equal to z_{TTT}^* .

Algorithm 2: Enumerative algorithm for the station-junction location problem minimizing the total travel time.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Table of contents

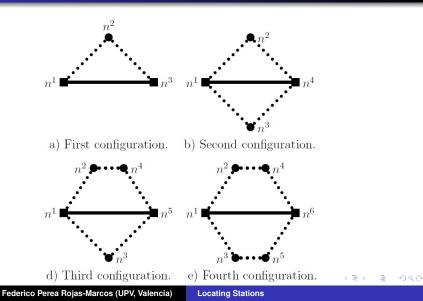
- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

Two new stations

- Mathematical models
- Algorithms

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

Instances



Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

3

Data generation

- $W = E_R \cup E_T$.
- $g_{pq} = \sqrt{\frac{w_p w_q}{d_{pq}}}$, where $w_p \sim \mathcal{U}(5, 15) d_{pq}$ is the Euclidean distance between n^p and n^q .
- x₁ ∈ [0.5, 1.5] in order to avoid locating the new station too close to the existing ones (n^k is in (0,2)).

•
$$\alpha_1 = 1, \, \alpha_2 = 0.25$$

•
$$c_1 = 1.5, c_2 = 0.5, c_{ij} = d_{ij}, C_{\max} = 2.8.$$

• One hour of CPU time.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

<ロ> <同> <同> < 同> < 同> < 同> 、

크

Results MINLP

5 instances for each configuration and, on average:

	z_{TTT}	z_{RID}	z_{WIN}	Seconds
TTT	74.8	30.9	28.5	236.0
RID	75.1	30.8	24.8	1162.2
WIN	83.8	28.9	33.3	1275.2

Table 1: Average value for each objective and CPU time (columns) obtained by the MINLP-based algorithms (rows).

Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results MINLP interpretation

- Model TTT yields better total travel times.
- Model TTT yields better riderships.
- Model WIN yields better number of winners.
- Model TTT is significantly more efficient than the other two.

Conclusion: keep model TTT !

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison with enumerative

- Model TTT versus Enumerative.
- Three step sizes: 0.1, 0.05, 0.025
- 50 instances for each configuration and, on average:

Algorithm	MINLP	$\mathrm{ENUM}_{0.1}$	$\mathrm{ENUM}_{0.05}$	$ENUM_{0.025}$
Avg. TTT	77.21	76.36	76.25	76.21
Avg. CPU time (sec.)	149.20	0.20	0.74	3.01
Avg. %gap	-	-0.5	-0.68	-0.75

Table 2: Average results when comparing the MINLP-based algorithm and the enumerative algorithms.

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison with enumerative

- Enumerative yields better TTT.
- Enumerative is faster.
- The smaller the step size, the slower the enumerative.

Conclusion: enumerative works well !

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

イロト イヨト イヨト イヨト

3

Application: Input data

City		Population	Latitude	Longitude	х	у
Madrid	1	5098322*	40.42	-3.70	0.0	0.0
Valladolid	2	309714	41.66	-4.73	179.3	0.0
Colmenar Viejo	3	46955	40.66	-3.77	25.5	5.8
Collado Villalba - Galapagar	4	95207	40.63	-4.01	40.0	29.3
Segovia	5	54309	40.95	-4.12	75.5	-2.1
Laguna de Duero	6	22590	41.58	-4.72	172.9	-1.0
Miraflores de la Sierra	7	5907	40.81	-3.77	38.8	-4.7
Garcillán	8	477	40.98	-4.27	92.9	1.4
Santa María la Real de Nieva	9	993	41.07	-4.40	106.1	1.3
Olmedo	10	3776	41.29	-4.68	144.9	-0.3
Matapozuelos	11	1032	41.41	-4.79	163.4	-0.0
Cuéllar	12	9861	41.40	-4.31	128.5	-17.4

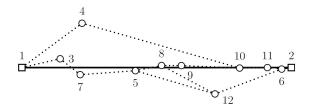
Table 3: Cities considered in the case study. *The population of Madrid includes its metropolitan area.

Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations

Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

æ

Application: Graph



Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations

ion Motivation and input data Mathematical models and algorithms Experiments and case study: Madrid-Valladolid

Application: Solution

	TTT	Station	Connection		Seconds
Heuristic	27963495.69	75	75.65334116	-2.102538069	201.54
MINLP	28042844.56	74.7828814	75.54361877	-2.070662348	19244.40

In both cases, very close to the actual station Segovia-Guiomar.

<ロ> <同> <同> < 同> < 同> < 同> 、

크

Mathematical models Algorithms

Input data (the same)

- Two train stations $T = \{n^1, n^k\} \subset \mathbb{R}^2$,
- A set of cities and junctions $R = \{n^2, ..., n^{k-1}\} \subset \mathbb{R}^2$,
- One rail link joining the two stations in T (set E_T),
- A set of road links E_R .
- $G = (R \cup T, E_R \cup E_T)$ is the road-rail network.
- n^1 is located at (0,0) and n^k is located at (b,0), b > 0.
- Let (n_1^i, n_2^i) be the coordinates of node $n^i \in R \cup T$.
- $A(E_R)$ and $A(E_T)$ are the arc sets associated to E_R and E_T .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Mathematical models Algorithms

Input data (the same)

- If d_{ij} denotes the Euclidean length of arc (i, j), then $t_{ij} = \alpha_1 d_{ij}$ if $(i, j) \in A(E_R)$ and $t_{ij} = \alpha_2 d_{ij}$ if $(i, j) \in A(E_T)$, with $\alpha_1 > \alpha_2 > 0$. (the train is faster than the road!).
- $t_{ij} = \alpha_1 d_{ij} + \psi$ if the new station is located at road edge (i, j), where $\psi \ge 0$ is a congestion parameter.
- g_{pq} denotes the number of potential trips of O/D pair (p,q), and u_{pq}^{ROAD} denotes the traveling time using the road network only.
- A stop time β at the new station.
- Construction costs of new station and new junction are c_1 and c_2 , respectively.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Construction cost of the new road edge proportional to Euclidean length, *τ*.
- Maximum budget equal to C_{\max} .

(日) (圖) (E) (E) (E)

The problem consists of choosing:

- a location for two new stations x_1, x_2 on E_T at nodes k + 1, k + 3,
- a location for two new junctions y_1, y_2 on E_R at nodes k + 2, k + 4,
- and building a road segment linking nodes k + 1 and k + 2, and a road segment linking nodes k + 3 and k + 4

so that a certain objective function is optimized, without violating the budget constraint.

Mathematical models Algorithms

イロト イヨト イヨト イヨト

크

Table of contents

One station

- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

2 Two new stations

- Mathematical models
- Algorithms

Mathematical models Algorithms

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Solution strategy

- Trying to solve this problem by a unique MP model seems impossible.
- Fix the two road links where the new junctions will be.
- Solve all such $O(|\mathbf{E}_{\mathbf{R}}|^2)$ problems, and keep the best solution.

Mathematical models Algorithms

Variables

- New $x_1 < x_2 \in [0, b]$: the first coordinates of the new stations.
- **2** New $\lambda_1, \lambda_2 \in [0, 1]$: the convex combinations of (i_1^*, j_1^*) and (i_2^*, j_2^*) where the new junctions are to be located.
- **New** $y_1 = (y_1^1, y_1^2)$ and $y_2 = (y_2^1, y_2^2)$: coordinates of the location of the new junction.
- δ_{ij} define the travel times of the new arcs.
- Sinary variable f_{ij}^{pq} : O/D pair (p,q) uses arc (i,j).
- **6** Binary variable v_{pq}^1 : O/D pair (p,q) stops at the first new station.
- **7** New Binary variable v_{pq}^2 : O/D pair (p,q) stops at the second new station.
- **3** u_{pq} is the travel time associated with O/D pair (p,q).

Mathematical models Algorithms

Some of these variables are now explicitly defined(New):

$$\begin{split} y_1^1 &= \lambda_1 n_1^{i_1^*} + (1-\lambda_1) n_1^{j_1^*}, \\ y_1^2 &= \lambda_1 n_2^{i_1^*} + (1-\lambda_1) n_2^{j_1^*}, \\ y_2^1 &= \lambda_2 n_1^{i_2^*} + (1-\lambda_2) n_1^{j_2^*}, \\ y_2^2 &= \lambda_2 n_2^{i_2^*} + (1-\lambda_2) n_2^{j_2^*}, \end{split}$$

One stationMathematical modelsTwo new stationsAlgorithms

Some of these variables are now explicitly defined(New):

$$\begin{split} \delta_{i_1^*,k+2} &= (1-\lambda_1)t_{i_1^*j_1^*}, \delta_{j_1^*,k+2} = \lambda_1 t_{i_1^*j_1^*}, \\ \delta_{i_2^*,k+4} &= (1-\lambda_2)t_{i_2^*j_2^*}, \delta_{j_2^*,k+4} = \lambda_2 t_{i_2^*j_2^*}, \\ \delta_{1,k+1} &= \alpha_2 x_1, \ \delta_{k,k+3} = \alpha_2 (b-x_2), \delta_{k+1,k+3} = \alpha_2 (x_2-x_1), \\ \delta_{k+1,k+2} &= \alpha_1 \sqrt{(x_1-y_1^1)^2 + (0-y_1^2)^2}, \\ \delta_{k+3,k+4} &= \alpha_1 \sqrt{(x_2-y_2^1)^2 + (0-y_2^2)^2}, \\ \delta_{ij} &= \delta_{ji}, \ \forall \ (i,j) \in A(E_{(i^*,j^*)} \setminus E_R) : i > j, \\ u_{pq} &= \sum_{(i,j) \in A(E_R \setminus (i^*,j^*))} t_{ij} f_{ij}^{pq} + \sum_{(i,j) \in A(E_{(i^*,j^*)} \setminus E_R)} \delta_{ij} f_{ij}^{pq} + \beta v_{pq}, \ \forall \ (p,q) \end{split}$$

Mathematical models Algorithms

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Budget constraint

$$2(c_1 + c_2) + \tau(\sqrt{(x_1 - y_1^1)^2 + (0 - y_1^2)^2} + \sqrt{(x_2 - y_2^1)^2 + (0 - y_2^2)^2}) \le C_{max}.$$

Mathematical models Algorithms

Constraints

$$\sum_{i:(i,p)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{ip}^{pq} = 0, \ (p,q) \in W$$
(12)
$$\sum_{j:(p,j)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{pj}^{pq} = 1, \ (p,q) \in W$$
(13)
$$\sum_{j:(i,q)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{iq}^{pq} = 1, \ (p,q) \in W$$
(14)
$$\sum_{j:(q,j)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{ij}^{pq} = 0, \ (p,q) \in W$$
(15)
$$\sum_{j:(q,j)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{ir}^{pq} - \sum_{j:(r,j)\in A(E_{(i_{1}^{*},j_{1}^{*}),(i_{2}^{*},j_{2}^{*}))}} f_{rj}^{pq} = 0, \ (p,q), \ r \notin \{p,q\}$$
(16)

Mathematical models Algorithms

New stop constraints

$$\begin{split} f_{1,k+1}^{pq} + f_{k+1,k+3}^{pq} + f_{k+3,k+1}^{pq} + f_{k+1,k}^{pq} - 1 &\leq v_{pq}^{1}, \ (p,q) \in W. \ \ \text{(17)} \\ f_{k+3,k+1}^{pq} + f_{k+1,k+3}^{pq} + f_{k+3,k}^{pq} + f_{k,k+3}^{pq} - 1 &\leq v_{pq}^{2}, \ (p,q) \in W. \ \ \text{(18)} \\ v_{pq}^{1} &= 1 \text{ if a stop time at the new station } n^{k+1}. \ v_{pq}^{2} = 1 \text{ if a stop time at the new station } n^{k+3} \end{split}$$

Mathematical models Algorithms

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

- Same objectives as before.
- Minimizing TTT yields the best results in terms of ridership and CPU time.

Mathematical models Algorithms

イロト イヨト イヨト イヨト

Table of contents

One station

- Motivation and input data
- Mathematical models and algorithms
- Experiments and case study: Madrid-Valladolid

2 Two new stations

- Mathematical models
- Algorithms

Mathematical models Algorithms

(日) (圖) (E) (E) (E)

MINLP algorithm

- For all $(i_1^*, j_1^*), (i_2^*, j_2^*) \in E_R$ solve the model before.
- Keep the best solution

Main drawback: you need to solve $O(|E_R|^2)$ MINLP problems, which might be too much.

Mathematical models Algorithms

・ロト ・四ト ・ヨト ・ヨト

크

Greedy strategy

- Locate one station and update the railroad network.
- Locate the second station.

Main drawback: the first station is kind of centered, the second one is kind of in the middle of one of the new rail segments.

Mathematical models Algorithms

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Enumerative algorithm

- For all (*i*^{*}₁, *j*^{*}₁), (*i*^{*}₂, *j*^{*}₂) ∈ *E_R* find (near) optimal locations using the enumerative algorithm before.
- Keep the best solution.

Seems the most efficient approach

Mathematical models Algorithms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Perea, F., Mesa, J. A., Laporte, G. "Adding a new station and a road link to a road-rail network in the presence of modal competition". Transportation Research B 68, 1-16, (2014).

Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations

Mathematical models Algorithms

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

Announcement

15th International Conference on Project Management and Scheduling Valencia from 19 to 22 April 2016 www.pms2016.com