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One station
Two new stations

Designing or extending railway networks is an important issue
for many governments since trains:

1 reduce traffic congestion.
2 do not depend on petrol as much as road vehicles.
3 safety.
4 ...

A railway network must be attractive for passengers, otherwise
nobody will use it and all the (huge) investment will be wasted!

Federico Perea Rojas-Marcos (UPV, Valencia) Locating Stations



One station
Two new stations

Steps in railway network design

When designing a railway network one should (among others):
1 estimate potential trips (origin-destination matrix)
2 design the infrastructure: stations and tracks
3 propose lines
4 line frequencies
5 schedules
6 crew assignment
7 ...
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Input data

Two train stations T = {n1, nk} ⊂ R2,
A set of cities and junctions R = {n2, ..., nk−1} ⊂ R2,
One rail link joining the two stations in T (set ET ),
A set of road links ER.
G = (R ∪ T,ER ∪ ET ) is the road-rail network.
n1 is located at (0, 0) and nk is located at (b, 0), b > 0.
Let (ni1, n

i
2) be the coordinates of node ni ∈ R ∪ T .

A(ER) and A(ET ) are the arc sets associated to ER and
ET .
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Input data

If dij denotes the Euclidean length of arc (i, j), then
tij = α1dij if (i, j) ∈ A(ER) and tij = α2dij if (i, j) ∈ A(ET ),
with α1 > α2 > 0. (the train is faster than the road!).
tij = α1dij + ψ if the new station is located at road edge
(i, j), where ψ ≥ 0 is a congestion parameter.
gpq denotes the number of potential trips of O/D pair (p, q),
and uROADpq denotes the traveling time using the road
network only.
A stop time β at the new station.
Construction costs of new station and new junction are c1
and c2, respectively.
Construction cost of the new road edge proportional to
Euclidean length, τ .
Maximum budget equal to Cmax.
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Objective

The problem consists of choosing:
a location for the new station x on ET at node k + 1,
a location for a new junction y on ER at node k + 2,
and building a road segment linking nodes k + 1 and k + 2,

so that a certain objective function is optimized, without
violating the budget constraint.
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Solution strategy

Trying to solve this problem by a unique MP model seems
impossible.
Fix the road link where the new junction will be.
Solve all such O(|ER|) problems, and keep the best
solution.
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Network extension

The new node set is R ∪ T ∪ {n4, n5}, and the new edge set is

E(2,3) = {(1, 2), (1, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.

Both the locations of the two new nodes and the lengths of the
five new edges are variables.
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Objective functions

minimizing the total travel time,
maximizing the number of travelers who will use the rail
corridor (ridership),
maximizing the number of users who are positively
affected by the construction of the new station (winners).

According to some authors: “maximizing passenger attraction
is the most appropriate objective to consider when planning
transit systems”.
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Variables

1 x1 ∈ [0, b]: the first coordinate of the new station.
2 λ ∈ [0, 1]: the convex combination of (i∗, j∗) where the new

junction is to be located.
3 y1 and y2: coordinates of the location of the new junction.
4 δij define the travel times of the new arcs.
5 Binary variable fpqij : O/D pair (p, q) uses arc (i, j).

6 Binary variable vpq: O/D pair (p, q) stops at the new station.
7 upq is the travel time associated with O/D pair (p, q).
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Some of these variables are now explicitly defined:

y1 = λni
∗
1 + (1− λ)nj

∗

1 ,

y2 = λni
∗
2 + (1− λ)nj

∗

2 ,

δi∗,k+2 = (1− λ)ti∗j∗ , δj∗,k+2 = λti∗j∗ ,

δ1,k+1 = α2x1, δk,k+1 = α2(b− x1),

δk+1,k+2 = α1

√
(x1 − y1)2 + (0− y2)2,

δij = δji, ∀ (i, j) ∈ A(E(i∗,j∗) \ ER) : i > j,

upq =
∑

(i,j)∈A(ER\(i∗,j∗))

tijf
pq
ij +

∑
(i,j)∈A(E(i∗,j∗)\ER)

δijf
pq
ij + βvpq, ∀ (p, q) ∈W.

Note that the definition of upq contains the quadratic terms
δijf

pq
ij which can easily be linearized. Unfortunately, the

non-linearity in the definition of δk+1,k+2 cannot be removed,
which makes our model non-linear.
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Budget constraint

c1 + c2 + τ
√

(x1 − y1)2 + (0− y2)2 ≤ Cmax. (1)

This constraint ensures that the cost of building the new station
c1 plus the cost of building the new junction c2 plus the cost of
building the new road link does not exceed the available budget.
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Constraints

∑
i:(i,p)∈A(E(i∗,j∗))

fpqip = 0, (p, q) ∈W (2)

∑
j:(p,j)∈A(E(i∗,j∗))

fpqpj = 1, (p, q) ∈W (3)

∑
i:(i,q)∈A(E(i∗,j∗))

fpqiq = 1, (p, q) ∈W (4)

∑
j:(q,j)∈A(E(i∗,j∗))

fpqij = 0, (p, q) ∈W (5)

∑
i:(i,r)∈A(E(i∗,j∗))

fpqir −
∑

j:(r,j)∈A(E(i∗,j∗))

fpqrj = 0, (p, q), r /∈ {p, q}

(6)
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New stop constraints

fpq1,k+1 + fpqk+1,k + fpqk,k+1 + fpqk+1,k − 1 ≤ vpq, (p, q) ∈W. (7)

vpq = 1 if two rail arcs are used by the O/D pair (p, q), meaning
that this O/D pair will incur a stop time at the new station nk+1.
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Objective 1

Minimizing the total travel time of the road-rail network:

minimize zTTT :=
∑

(p,q)∈W

gpqupq, (8)

Minimizing (8) subject to constraints (1) to ((7)) yields model
TTT (i∗,j∗).
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Objective 2

Maximizing ridership. Assume that the proportion of travelers in
(p, q) who will use the rail corridor is given by

ψ(uROADpq − upq) =
1

1 + γ1e
−γ2(uROAD

pq −upq)
,

where γ1, γ2 > 0 are two parameters to be calibrated depending
on the instance. In this case the objective is

maximize zRID :=
∑

(p,q)∈W

gpq
1

1 + γ1e
−γ2(uROAD

pq −upq)
. (9)

Unfortunately, this function is neither convex nor concave,
which makes the problem difficult to solve. Maximizing (9)
subject to constraints (1) to (7) yields model RID(i∗,j∗) .
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Objective 3

Maximizing the number of users who are positively affected by
the construction of the new station and the new road link
(winners, if upq < uROADpq . Define spq = 1 if upq < uROADpq . The
objective is modeled as follows:

maximize zWIN :=
∑

(p,q)∈W

gpqspq. (10)

Add the following constraints:

upq − uROADpq + ε ≤ (1− spq), (p, q) ∈W, (11)

where ε is a small positive number. Maximizing (10) subject to
(11) and constraints (1) to (7) yields model WIN (i∗,j∗) .
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MINLP algorithm
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Enumerative algorithm
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Instances

Coordinates move randomly around these points.
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Data generation

W = ER ∪ ET .

gpq =
√

wpwq

dpq
, where wp ∼ U(5, 15) dpq is the Euclidean

distance between np and nq.
x1 ∈ [0.5, 1.5] in order to avoid locating the new station too
close to the existing ones (nk is in (0,2)).
α1 = 1, α2 = 0.25

c1 = 1.5, c2 = 0.5, cij = dij , Cmax = 2.8.
One hour of CPU time.
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Results MINLP

5 instances for each configuration and, on average:
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Results MINLP interpretation

Model TTT yields better total travel times.
Model TTT yields better riderships.
Model WIN yields better number of winners.
Model TTT is significantly more efficient than the other two.

Conclusion: keep model TTT !
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Comparison with enumerative

Model TTT versus Enumerative.
Three step sizes: 0.1, 0.05, 0.025
50 instances for each configuration and, on average:
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Comparison with enumerative

Enumerative yields better TTT.
Enumerative is faster.
The smaller the step size, the slower the enumerative.

Conclusion: enumerative works well !
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Application: Input data
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Application: Graph
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Application: Solution

In both cases, very close to the actual station Segovia-Guiomar.
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Input data (the same)

Two train stations T = {n1, nk} ⊂ R2,
A set of cities and junctions R = {n2, ..., nk−1} ⊂ R2,
One rail link joining the two stations in T (set ET ),
A set of road links ER.
G = (R ∪ T,ER ∪ ET ) is the road-rail network.
n1 is located at (0, 0) and nk is located at (b, 0), b > 0.
Let (ni1, n

i
2) be the coordinates of node ni ∈ R ∪ T .

A(ER) and A(ET ) are the arc sets associated to ER and
ET .
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Input data (the same)

If dij denotes the Euclidean length of arc (i, j), then
tij = α1dij if (i, j) ∈ A(ER) and tij = α2dij if (i, j) ∈ A(ET ),
with α1 > α2 > 0. (the train is faster than the road!).
tij = α1dij + ψ if the new station is located at road edge
(i, j), where ψ ≥ 0 is a congestion parameter.
gpq denotes the number of potential trips of O/D pair (p, q),
and uROADpq denotes the traveling time using the road
network only.
A stop time β at the new station.
Construction costs of new station and new junction are c1
and c2, respectively.
Construction cost of the new road edge proportional to
Euclidean length, τ .
Maximum budget equal to Cmax.
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Objective

The problem consists of choosing:
a location for two new stations x1, x2 on ET at nodes
k + 1, k + 3,
a location for two new junctions y1, y2 on ER at nodes
k + 2, k + 4,
and building a road segment linking nodes k + 1 and k + 2,
and a road segment linking nodes k + 3 and k + 4

so that a certain objective function is optimized, without
violating the budget constraint.
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Solution strategy

Trying to solve this problem by a unique MP model seems
impossible.
Fix the two road links where the new junctions will be.
Solve all such O(|ER|2) problems, and keep the best
solution.
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Variables

1 New x1 < x2 ∈ [0, b]: the first coordinates of the new
stations.

2 New λ1, λ2 ∈ [0, 1]: the convex combinations of (i∗1, j
∗
1) and

(i∗2, j
∗
2) where the new junctions are to be located.

3 New y1 = (y11, y
2
1) and y2 = (y12, y

2
2): coordinates of the

location of the new junction.
4 δij define the travel times of the new arcs.
5 Binary variable fpqij : O/D pair (p, q) uses arc (i, j).

6 Binary variable v1pq: O/D pair (p, q) stops at the first new
station.

7 New Binary variable v2pq: O/D pair (p, q) stops at the
second new station.

8 upq is the travel time associated with O/D pair (p, q).
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Some of these variables are now explicitly defined(New):

y11 = λ1n
i∗1
1 + (1− λ1)n

j∗1
1 ,

y21 = λ1n
i∗1
2 + (1− λ1)n

j∗1
2 ,

y12 = λ2n
i∗2
1 + (1− λ2)n

j∗2
1 ,

y22 = λ2n
i∗2
2 + (1− λ2)n

j∗2
2 ,
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Some of these variables are now explicitly defined(New):

δi∗1,k+2 = (1− λ1)ti∗1j∗1 , δj∗1 ,k+2 = λ1ti∗1j∗1 ,

δi∗2,k+4 = (1− λ2)ti∗2j∗2 , δj∗2 ,k+4 = λ2ti∗2j∗2 ,

δ1,k+1 = α2x1, δk,k+3 = α2(b− x2), δk+1,k+3 = α2(x2 − x1),

δk+1,k+2 = α1

√
(x1 − y11)2 + (0− y21)2,

δk+3,k+4 = α1

√
(x2 − y12)2 + (0− y22)2,

δij = δji, ∀ (i, j) ∈ A(E(i∗,j∗) \ ER) : i > j,

upq =
∑

(i,j)∈A(ER\(i∗,j∗))

tijf
pq
ij +

∑
(i,j)∈A(E(i∗,j∗)\ER)

δijf
pq
ij + βvpq, ∀ (p, q) ∈W.
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Budget constraint

2(c1 + c2) + τ(
√
(x1 − y11)2 + (0− y21)2 +

√
(x2 − y12)2 + (0− y22)2)

≤ Cmax.
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Constraints

∑
i:(i,p)∈A(E(i∗1,j

∗
1 ),(i∗2,j

∗
2 ))

fpqip = 0, (p, q) ∈W (12)

∑
j:(p,j)∈A(E(i∗1,j

∗
1 ),(i∗2,j

∗
2 ))

fpqpj = 1, (p, q) ∈W (13)

∑
i:(i,q)∈A(E(i∗1,j

∗
1 ),(i∗2,j

∗
2 ))

fpqiq = 1, (p, q) ∈W (14)

∑
j:(q,j)∈A(E(i∗1,j

∗
1 ),(i∗2,j

∗
2 ))

fpqij = 0, (p, q) ∈W (15)

∑
i:(i,r)∈A(E(i∗1,j

∗
1 ),(i∗2,j

∗
2 ))

fpqir −
∑

j:(r,j)∈A(E(i∗1,j
∗
1 ),(i∗2,j

∗
2 ))

fpqrj = 0, (p, q), r /∈ {p, q}

(16)
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New stop constraints

fpq1,k+1 + fpqk+1,k+3 + fpqk+3,k+1 + fpqk+1,k − 1 ≤ v1pq, (p, q) ∈W. (17)

fpqk+3,k+1 + fpqk+1,k+3 + fpqk+3,k + fpqk,k+3− 1 ≤ v2pq, (p, q) ∈W. (18)

v1pq = 1 if a stop time at the new station nk+1. v2pq = 1 if a stop
time at the new station nk+3
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Objectives

Same objectives as before.
Minimizing TTT yields the best results in terms of ridership
and CPU time.
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MINLP algorithm

For all (i∗1, j
∗
1), (i

∗
2, j
∗
2) ∈ ER solve the model before.

Keep the best solution

Main drawback: you need to solve O(|ER|2) MINLP problems,
which might be too much.
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Greedy strategy

Locate one station and update the railroad network.
Locate the second station.

Main drawback: the first station is kind of centered, the second
one is kind of in the middle of one of the new rail segments.
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Enumerative algorithm

For all (i∗1, j
∗
1), (i

∗
2, j
∗
2) ∈ ER find (near) optimal locations

using the enumerative algorithm before.
Keep the best solution.

Seems the most efficient approach
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End

Perea, F., Mesa, J. A., Laporte, G. "Adding a new station and a
road link to a road-rail network in the presence of modal
competition". Transportation Research B 68, 1-16, (2014).
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Announcement

15th International Conference on Project Management and
Scheduling
Valencia from 19 to 22 April 2016
www.pms2016.com
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