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Motivation 

Facilities 

Demand Points Caracteristics: 

Georreferenced information 
Distance metrics 

Demand Aggregation 
e.g. Postal Code 

Potential Facility Locations 
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Motivation 

• Location problems involve the decision of locating a set of facilities to satisfy one 
or more objective functions and constraints, regarding the demand for the 
service provided from the facilities.  

 

• Finding good solutions to location problems helps to make better decisions in 
public (Marianov & Serra, 2004) and private contexts (Church & Murray, 2008).  

 

• Applications of location models are diverse.  
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Motivation 

Logistics and Supply Chain 
Management (Melo et al., 2009) 

Bank Offices 
(Miliotis et al., 2002) 

Retail Outlets  
(Mendes & Themido, 2004) 

Emergency Services 
(Marianov, 2017; Marianov & Serra et al., 2004) 

Schools and Postal Offices 
(Marianov & Serra et al., 2004) 

Telecomunications 
(Gollowitzer & Ljubić I, 2011) 

Routing and Transportation 
(Nickel et al., 2001; Drexl & Schneider, 2015) 

Castañeda, C. & Serra, D.  January 30 – February 1, 2019 5/52 



Motivation 

• Location problems have recognized potential of interaction with other disciplines such as 
mathematics, engineering, economics, geography, regional science and logistics (Laporte 
& Nickel, 2015) (Murray, 2010) (Melo et al., 2009).  

• Demand is composed by a very large number of customers  

• Problems become intractable or unrealistic in terms of using traditional solution methods 
such as linear mixed binary programming.  

• It is usual to aggregate demand points with the purpose of obtaining tractable and 
smaller models.  

    Error is induced! 
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Aggregation Error 

• Crucial decisions in aggregation  

o Number of aggregated demand points 

o Location of aggregated points  

o How to assign the disaggregated demand points to the aggregated points 

• The number of aggregated demand points determine the magnitude of error 

• If possible, aggregation should be avoided 
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Aggregation Error 

• Aggregation error was first formally defined by (Hillsman & Rhoda, 1978).  

• The main classification of aggregation errors ABC type errors.  

• Other error measures are based on ABC classification. 

• There is no general agreement on how to measure error and depends on the location 
model 

• Error measures are influenced by the distance metrics 
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Aggregation Error 

• Errors type ABC (Hillsman & Rhoda, 1978)  
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Aggregation Error 

• Frameworks to integrate aggregation algorithms and large location models 
o Francis et al. (2004) - framework for aggregating demand in a continuous space for covering and center 

models. 

o Plastria et al. (2006) - aggregation method that reduces the number of variables and constraints of the 
location model to decrease errors and avoid the optimality loss in competitive location problems. 

o Avella et al. (2012) - heuristic for large-scale p-median problem instances based on Lagrangean 
relaxation. 

o Jang & Lee (2015) - method to obtain near zero aggregation errors in covering problems avoiding the 
binary definition of coverage and using a random aggregation method.  

o Irawan & Salhi (2015) - multi-stage hybridization of a clustering-based technique and of a Variable 
Neighborhood Search (VNS) to solve large-scale p-median problems  

o Cebecauer & Buzna (2017) - adaptive aggregation framework for the facility location problems that 
keeps the problem size in reasonable limits.  
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Aggregation Error 

• Research has been focused on developing better ways to measure the 
error caused by aggregation mostly in p-median problems 

• There has been less interest in development of algorithms for making 
better aggregations and measure the impact in location problems 
solutions and aggregation errors.  

• Few recent works have addressed aggregation for location models 
considering network distances.  
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Heuristic Framework 

• Selection bias of points 

• Groups based on 
distance (Super Nodes) 

Stage 1 
Aggregation 

• Minimum spanning tree 

• Centroid is one of the 
nodes in the tree 

Stage 2 
Centroids 

• p-median model 

• Exact solution 

Stage 3   
Location Model 

• Evaluation of the 
objective function value 

• Relationship between 
number of groups and 
real demand points 

• Type A, B and C errors 

 

Stage 4 

 Repair Solution 
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Composed by 4 stages 
Use network distances 



Heuristic Framework 
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• Demand on nodes 
• Distance on edges 

 
• Example: Network with 55 nodes 
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1. Select one node randomly 



Heuristic Framework 
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1. Select one node randomly 
2. Select a direct connected 

node with a probability based 
on distance 
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54 nodes in the eligible list 

1. Select one node randomly 
2. Select a direct connected 

node with a probability based 
on distance 

3. Create one Super Node 



Heuristic Framework 
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Repeat  the steps until the eligible list 
is empty 
 
1. Select one node randomly 
2. Selection biased of a direct 

connected node 
3. Create one Super Node 
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• Eligible list is empty 
• 10 Groups 
• Groups are not homogeneous 
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Heuristic Framework 
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Heuristic Framework 

29 Castañeda, C. & Serra, D.  July 9th 2018 



Heuristic Framework 
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Centroid of the minimum expansion tree 
Vertex 1-center on a tree 
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• Eligible list is empty 
• 10 Groups 
• Groups are not homogeneous 
• 10 centroids 
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Heuristic Framework 
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• 10 Groups 
• 10 centroids 
• p-median (locating 3 facilities) 
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Heuristic Framework 
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• 10 Groups 
• 10 centroids 
• p-median (locating 3 facilities) 

• Number of groups / Number of demand points 
• Avoiding error type B 
• Error type C – Relocate demand nodes 
• Error type A is not addressed 
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Stop criterion 
• Objective function 
• Rate of aggregated 

and disaggregated 
demand nodes 

First iteration  
with no fixed 

number of groups 



Heuristic Framework 
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Stage 1 
Aggregation 

Stage 2 
Centroids 

Stage 3 
Location Model 

Stage 4      
Repair Solution 

• Challenges: 

o Definition of a measure of dispersion of the demand 
points respect to the centroid of the group based on 
spatial analysis 

o Include a GRASP heuristic to repair the solution due to 
the multi-start characteristics of the framework 

o Perturbation of the aggregation  

o Include metaheuristic methods to solve the location 
problems 

o Test cluster and districting algorithms 

 



Conclusions and Future Work 

According with the literature review: 

• There are more works for median models than for center and covering models 

• There is little average-case analysis of aggregation errors  

• There are no analytical models for addressing the trade-off of doing aggregation 

• The use of centroids as aggregated demand points is limited to median models 

• Data for testing algorithms is often computer-generated instead of being real data  

• The development of frameworks to integrate location models with aggregation 
algorithms is an active research field.  
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Conclusions and Future Work 

Extensive survey and analysis about the error induced by aggregation in location models: 

Francis, R. L., Lowe, T. J., Rayco, M. B., & Tamir, A. (2009). Aggregation error for location 
models: survey and analysis. Annals of Operations Research, 167(1), 171–208. 

• Aggregation error measures vary greatly depending on the problem 

• There is no agreement on how to measure errors correctly   
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Conclusions and Future Work 

• Future work: Make a deeper analysis of some properties found in the literature 

o Self cancelling error in models with additive structure 

o Presence of diminishing returns in error measure 

o Use of centroids not only in median models but also in center and covering problems 

o Develop aggregation algorithms based on clustering and spatial analysis 
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Thank you! 
Questions? 
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