
On computational Dynamic Programming for minimizing energy in an electric vehicle

Inmaculada Garcia Eligius M.T. Hendrix Europe 18 slides

31 January 2019

Location before coming to Spain

Available online at www.sciencedirect.com

Computers & Operations Research 35 (2008) 3311-3330

www.elsevier.com/locate/cor

Methods for computing Nash equilibria of a location-quantity game

M. Elena Sáiz*, Eligius M.T. Hendrix

OR Spectrum DOI 10.1007/s00291-008-0133-8

REGULAR ARTICLE

On a branch-and-bound approach for a Huff-like Stackelberg location problem

M. Elena Sáiz • Eligius M. T. Hendrix • José Fernández • Blas Pelegrín

Lets go South, 2008

EWGLA_08 Elche SEIO_08 Murcia

Do you want to be a member of RED-LOCA?

ELSEVIER

journal homepage: www.elsevier.com/locate/ejor

Continuous Optimization

Locating a competitive facility in the plane with a robustness criterion

com/locate/ejor

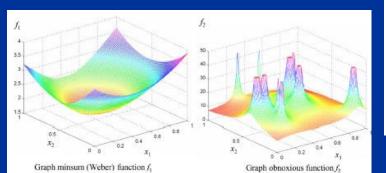
R. Blanquero a,*, E. Carrizosa a, E.M.T. Hendrix b

On Nash equilibria of a competitive location-design problem

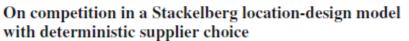
M. Elena Sáiz ^{a,*}, Eligius M.T. Hendrix ^{b,1}, Blas Pelegrín ^c

^a Methoden, Radboud Universiteit Nijmegen, The Netherlands

Recent insights in Huff-like competitive facility location and design

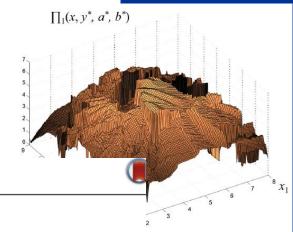

José Fernández ^a, Eligius M.T. Hendrix ^{b,*}

Comput Optim Appl (2015) 61:205-217


DOI 10.1007/s10589-014-9709-1

On heuristic bi-criterion methods for semi-obnoxious facility location

P. M. Ortigosa · E. M. T. Hendrix · J. L. Redondo



Ann Oper Res (2016) 246:19-30 DOI 10.1007/s10479-015-1793-9

.com/locate/ejor

Eligius M. T. Hendrix

^a Facultad de Matemáticas, Universidad de Sevilla, Tarfia s/n, 41012 Sevilla, Spain

^b Computer Architecture, Universidad de Málaga and Operations Research and Logistics, Wageningen University, The Netherlands

^bComputer Architecture, Universidad de Málaga and Operations Research and Logistics, Wageningen Universiteit, The Netherlands

^cDpt.Estadística e Investigación Operativa, Universidad de Murcia, Spain

^a Dpt. Statistics and Operations Research, University of Murcia, Spain

^b Computer Architecture, University of Málaga and Operations Research and Logistics, Wageningen University, Ne

Do you want to be a member of RED-LOCA?

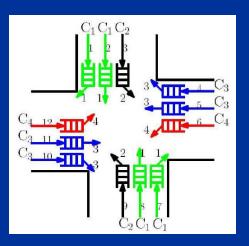
VIII Workshop on Locational Analysis and Related Problems 2017

1

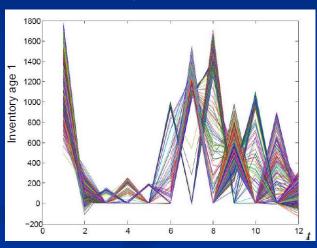
On location and vessel fleet composition for offshore wind farm maintenance*

A.G. Alcoba¹, E.M.T. Hendrix¹, G. Ortega² D. Haugland³, E.E. Halvorsen-Weare ⁴

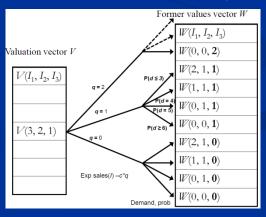
Topics seem to change subject


TSP in dynamic programming is biutiful



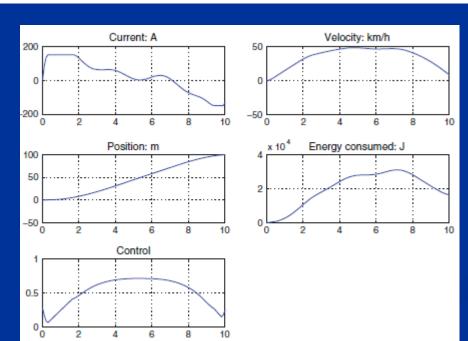

2010-2013

- Deforestation
- Fishery quota
- Traffic control
- Climate change



From 2012 SDP in Inventory control

Non-stationary, finite horizon Stationary, Markov


Can I talk about electric cars, RED-LOCA?

Proceedings of TOGO 2010, pp. 85 – 88.

Toward Global Minimum Solutions for the Problem of the Energy Consumption of an Electrical Vehicle

Abdelkader Merakeb^{1,2} and Frédéric Messine²

4OR-Q J Oper Res (2014) 12:261–283 DOI 10.1007/s10288-013-0247-y

RESEARCH PAPER

A Branch and Bound algorithm for minimizing the energy consumption of an electrical vehicle

Abdelkader Merakeb • Frédéric Messine • Mohamed Aidène

Why to use B&B?

Can I read engineerish?

$$\begin{cases} \min_{i_{m}(t),\Omega(t),pos(t),u(t)} & E(t_{f},i_{m},u) \\ s.t. \\ \frac{di_{m}(t)}{dt} &= \frac{u(t)V_{alim} - R_{m}i_{m}(t) - K_{m}\Omega(t)}{L_{m}} \\ \frac{d\Omega(t)}{dt} &= \frac{1}{J} \left(K_{m}i_{m}(t) - \frac{r}{K_{r}} \left(MgK_{f} + \frac{1}{2}\rho SC_{x} \left(\frac{\Omega(t)r}{K_{r}} \right)^{2} \right) \right) \\ \frac{dpos(t)}{dt} &= \frac{\Omega(t)r}{K_{r}} \\ |i_{m}(t)| &\leq 150 \\ u(t) &\in \{-1, +1\} \\ (i_{m}(0), \Omega(0), pos(0)) &= (i_{m}^{0}, \Omega^{0}, pos^{0}) \in \mathbb{R}^{3} \\ (i_{m}(t_{f}), \Omega(t_{f}), pos(t_{f})) &\in \mathcal{T} \subseteq \mathbb{R}^{3} \end{cases}$$

an electrical solar car: $K_r = 10$, the coefficient of reduction; $\rho = 1.293$ kg/m³, the air density; $C_x = 0.4$, the aerodynamic coefficient; S = 2 m², the area in the front of the vehicle; r = 0.33 m, the radius of the wheel; $K_f = 0.03$, the constant representing the friction of the wheels on the road; $K_m = 0.27$, the coefficient of the motor torque; $R_m = 0.03$ Ohms, the inductor resistance; $L_m = 0.05$, the inductance of the rotor; M = 250 kg, the mass; g = 9.81, the gravity constant; $J = M \times r^2/K_r^2$; $V_{alim} = 150$ V, the battery voltage; $R_{bat} = 0.05$ Ohms, the resistance of the battery.

Translated to Optimizish?

Indices

Moment in time with $\delta = 0.1$ second slots, t = 0, ..., T

Parameters

H Final control horizon in seconds

 δ time discretization slot, $\delta = 0.1$

T Number of periods in the horizon $T = \frac{H}{\delta}$

P Target position to be reached in control horizon

R Radius of the wheels in m

B Resistance of the battery, B = .05 Ohm

S Voltage of power supply, S = 150 volts

Tr Transmission coefficient motor to wheels, Tr = 10

C resistance depending on air density, surface car and aerodynamics, C = .517

L Inductance rotor, L = .05

I Inductor resistance, I = .03 Ohm

Q Coefficient motor torque, Q = .27

M Mass vehicle, M = 250 kg

Gravity constant, G = 9.81

F Friction coefficient of the wheels, F = .03

Variables

 $i_t \in [-150, 150]$ Induction of the engine

 ω_t radial speed in radius per second. This translates to the velocity $v_t = \frac{R}{Tr}\omega_t$ in meter per second

 $p_t \in [0, P]$ position of the vehicle

 $u_t \in \{-1,1\}$ Control, switch. One can switch very frequently, such that this variable can also be

considered continuous. We will make use of that to limit its value such that $i_t \in [-150, 150]$

And stare at the model?

The objective is given by

$$E = \delta \sum_{t=0}^{T-1} Su_t i_t + Bu_t^2 i_t^2.$$
 (1.1)

The dynamics is given by difference equations taking the time step size δ into account. Position:

$$p_t = p_{t-1} + \delta v_t. \tag{1.2}$$

Induction:

$$i_t = i_{t-1} + \delta \frac{Su_t - Ii_{t-1} - Q\omega_{t-1}}{L}.$$
(1.3)

The dynnamics of the radial speed is given by

$$\omega_t = \omega_{t-1} + \delta \frac{Tr}{R} \left(\frac{QTr}{RM} i_{t-1} - GF - \frac{C}{M} v_{t-1}^2 \right). \tag{1.4}$$

Variables

 $p_t \in [0, P]$

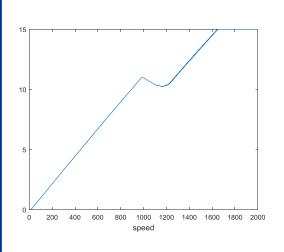
 $i_t \in [-150, 150]$ Induction of the engine

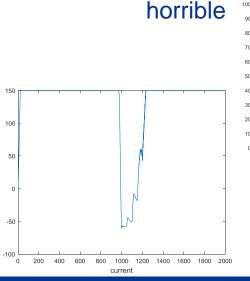
radial speed in radius per second. This translates to the velocity $v_t = \frac{R}{Tr}\omega_t$ in meter per second

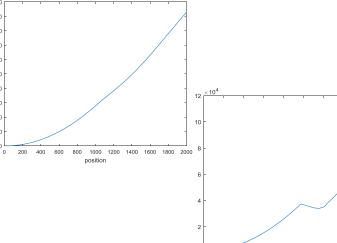
position of the vehicle

 $u_t \in \{-1, 1\}$ Control, switch. One can switch very frequently, such that this variable can also be considered continuous. We will make use of that to limit its value such that $i_t \in [-150, 150]$

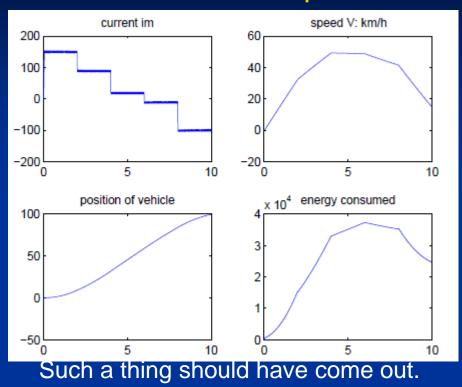
control rule $u_t(i,\omega,p)$ obviously


Andsolve.... or not

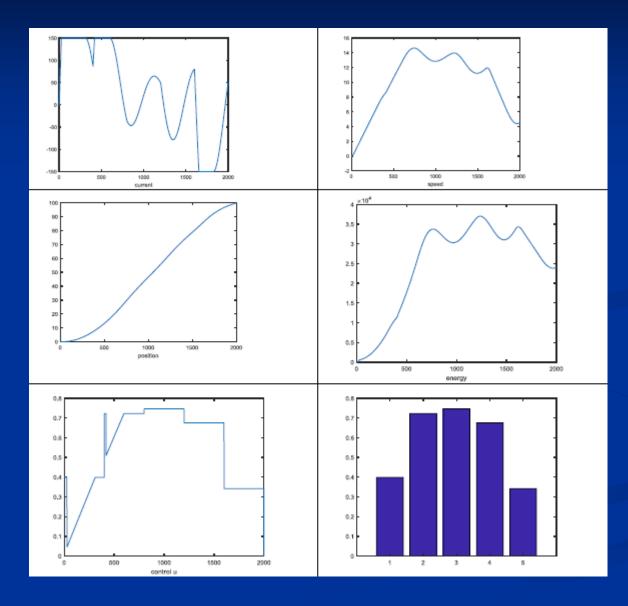

200 400 600 800 1000 1200 1400 1600 1800 20


DP view:

- Build simulation model, small time steps
- Bound state space
- Grids on state space and use interpolation (continuous variables)
- Run Bellman recursion backwards, with penalties on bad states
- Harvest a table $u(t,i,\omega,p)$ control rule $u_t(i,\omega,p)$
- Simulate applying interpolation
- Some pain in the discretisation of the time. Simulating forward different from step sizes control.



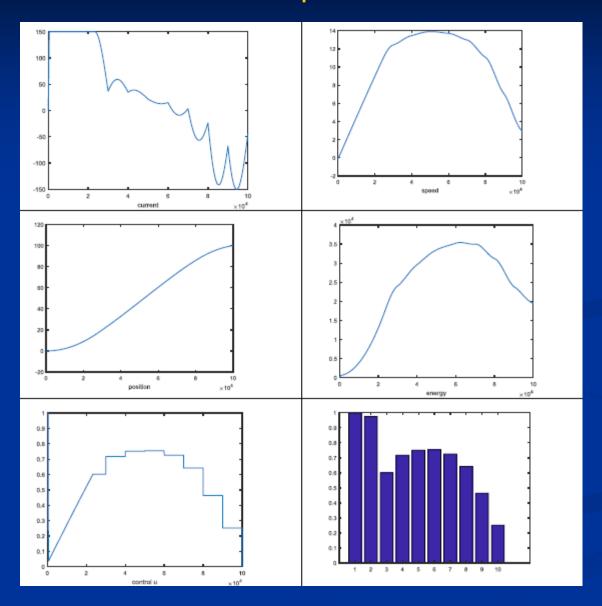
Three weeks ago Can I repeat the earlier exercise?


Ana Rocha, Universidade do Minho

Let us try, nonlinear optimisation on $u_t \in [-1,1]$ and limiting control to

$$\Delta_t = \frac{150L + (\delta I - L)i_{t-1} + \delta Q\omega_{t-1}}{\delta S}$$
 values of the control to
$$u_t \in \{\min\{-1, \operatorname{sgn}(\Delta_t) \min\{|\Delta_t|, 1\}, \max\{1, \operatorname{sgn}(\Delta_t) \min\{|\Delta_t|, 1\}\}\}$$

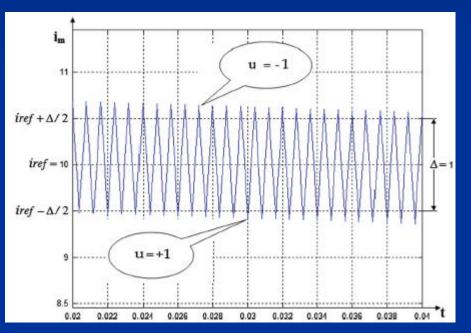
Within the simulator with small time steps of δ =.002

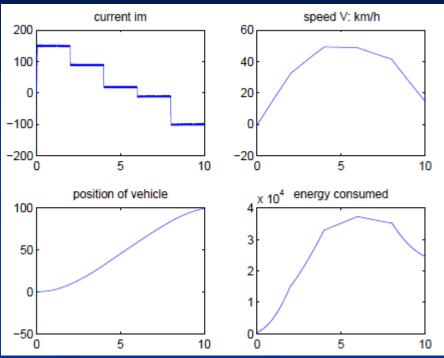

Three weeks ago Can I repeat the earlier exercise?

5 values for *u* Sim-based optimisation fmincon

Uf, makes more sense Energy 24191 joules

Three weeks ago Can I repeat the earlier exercise?

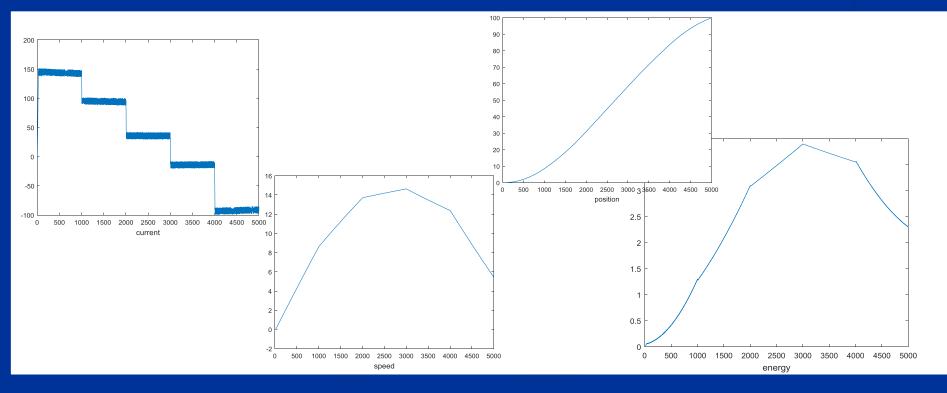



10 values for *u*Sim-based optimisation fmincon

Energy 19496 joules

Can I repeat the earlier exercise? Not exactly, what they had been doing is

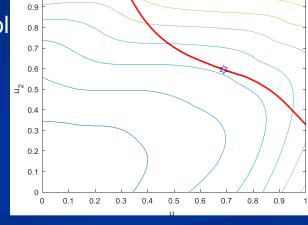
Optimise reference values for current i

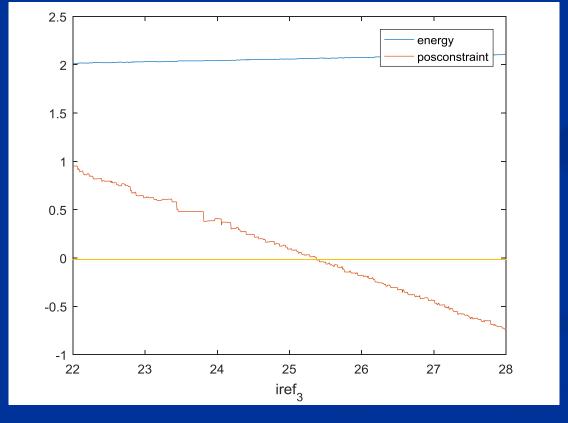

$$u(t) := \begin{cases} -1 & \text{if } i_m(t) > iref + \frac{\Delta}{2} \\ +1 & \text{if } i_m(t) < iref - \frac{\Delta}{2} \\ u(t^-) & \text{else.} \end{cases}$$

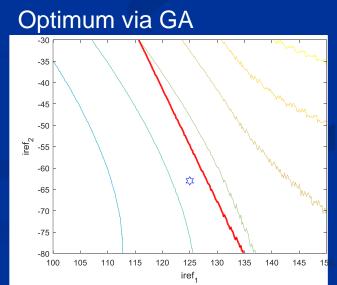
We built the corresponding simulator where *iref* is going in.

Simulation is biutiful

Continuous optimisation is ugly Simulation based optimisation

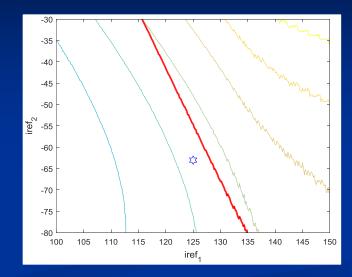



Why does this give a numerical problem from nlp perspective in simulation based


optimisation? No, pattern search neither works (well).

Vary one variable iref₃; nonsmooth, non-continuous:

Compare to smooth control optimisation of u₁, u₂



Concluding

Kader did a discretisation of the iref space (grid) and used bounds

One could use a population algorithm. Notice, it is not GO, just non-smooth

What to do:

- Let us focus on DP u_t space
- Try DP in iref space
- Applying bounding, discretisation and interpolation