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Introduction

NETWORK DESIGN
(nodes and sections)

DESIGN OF TRANSIT LINES

Establishment of service
FREQUENCIES

SCHEDULES of services

Assignment of CREW

Strategic level

Tactical level

VEHICLE programming

Operative Level



Introduction

Occasional incidents in the system operation are 
generally not considered in this initial planning 

stage



Introduction

The strategies most 

commonly used for this 

purpose:

• The express service.

• Short cycle service 

(short-turning) or non-stop

return (deadheading) .

• The combination of 

different control actions.



Introduction

• We can assume from the outset that the clients plan 
their trips according to a known chronogram and that 
they may feel affected if the railway services do not 
arrive or leave at the scheduled time. 

• We developed a methodology to implement a 
redistribution of services along a line of railway traffic. 

• The objective is to minimize the loss of users, who 
could perceive a worsening in the quality of the service 
that until now they had been receiving.



Introduction

• The Skip-Stop operation consists of privileging a larger
number of passengers by offering shorter travel times, 
as a result of having previously selected a group of low-
activity stations, where trains wouldn’t stop to pick up 
or let off passengers.

• In railway systems, where have no extra track for a 
faster train can pass a slower train, a skip-stop 
mechanism may be used either during busier travel
hours to reduce travel time of particular trains by not
stopping (skipping) at less densely populated stations.



Introduction

• The travel time between stations along a railway
line consists of five components, usually
identified as phases of acceleration, constant
speed, inertia, braking and downtime.

• Obviously, the operation of omitting stops
reduces the travel time for the users within the
vehicule and increases the speed of operation in 
the provision of new transit services.

• However, other users will experience, if this
strategy were applied, a longer time of waiting, 
accesing, exiting and, possibly, transferring.



Introduction

• Regarding the stop-skipping patterns for a one-way single track, the
fundamental approaches are divided into deterministic (see, for
instance, Mesa et al. [2009], Freyss et al [2013]), and stochastic forms
(Sun and Hickman [2005]).

• The deterministic form is derived from the description and analisis
given by Vuchic [1973] in which stations along a line are classified into
three groups A, B and AB. The trains in line A stop at the A and AB 
stations, while the trains belonging to line B stop at the B and AB 
stations. When they intend to alight at a B station, passengers boarding
at an A station will need to transfer at an AB station onto line B. Thus, 
this disadvantage might affect the attractiveness of stop-skipping
schedules.

• The main drawbacks of this form are the determination of the skipped
stations and the potential to fall behind the estimated demand with
respect to historical statiscal data.



Skip-Stop strategy

In the cities of Chicago, Philadelphia, New York, Santiago de Chile, Seoul 
(among others) this strategy has been applied in recent years.



Skip-Stop strategy



Skip-Stop strategy

The stations are classified as type A, B and AB. Trains are named in two ways:

those of type A, which will stop at stations A and AB, and type B trains, which 
will stop at stations B and AB. Consequently, origin-destination trips are 
classified into 9 groups.

Type OD     Orig.     Dest.                                Decision
▪ Type I      AB        AB Take any train
▪ Type II      A           A Take only trains type A
▪ Type II      A          AB                      Take only trains type A
▪ Type II      B          B Take only trains type B 
▪ Type II      B          AB                      Take only trains type B
▪ Type II     AB         A                        Take only trains type A
▪ Type II     AB         B                        Take only trains type B 
▪ Type III     A           B     Take trains type A and transfer to trains type B at AB station
▪ Type III     B           A     Take trains type B and transfer to trains type A at AB station



Knapsack Problem

The Knapsack Problem is inspired by the preparation of the necessary luggage 
that a walker places in his knapsack to make a trip. For this purpose, a 
selection among several possible objects that can provide the greatest 
benefit, without exceeding the storage capacity of the knapsack, must be 
carried out.



Knapsack Problem

The Knapsack Problem is inspired by the preparation of the necessary luggage 
that a walker places in his knapsack to make a trip. For this purpose, a 
selection among several possible objects that can provide the greatest 
benefit, without exceeding the storage capacity of the knapsack, must be 
carried out.

We propose to model the Skip-Stop 
problem through the KP taking 
advantage of the large amount of 
available contributions in the 
Literature.



Description problem and formulation

Indices and Sets
index identifying train services of set S.

indices identifying stations of set I.

Parameters
population available to board train s at station i with destination j
(if the number of intermediate stops were 0).

Variables
real population available to board train s at station i with destination j
(including intermediate stops).

number of intermediate stops between stations i and j for train service s.

binary variable equals to 1 if train s stops at station i;
0, otherwise.

binary variable equals to 1 if train s stops at stations i and j;
0, otherwise.
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Mathematical programming model

max ෍

𝑠∈𝑆

෍
𝑖,𝑗∈𝐼
𝑗>𝑖

𝑤𝑖𝑗
𝑠 ⋅ 𝑥𝑖𝑗

𝑠

s.t.: 

[1] 𝑤𝑖𝑗
𝑠 =

𝑝𝑖𝑗
𝑠

𝑛𝑖𝑗
𝑠 + 1

𝑖, 𝑗 ∈ 𝐼, 𝑗 > 𝑖 ; 𝑠 ∈ 𝑆,

[3] 𝑥𝑖𝑗
𝑠 ≤ 𝑦𝑖

𝑠 ; 𝑥𝑖𝑗
𝑠 ≤ 𝑦𝑗

𝑠 𝑖, 𝑗 ∈ 𝐼, 𝑗 > 𝑖 ; 𝑠 ∈ 𝑆

[6] 𝑥𝑖𝑗
𝑠 , 𝑦𝑖

𝑠 ∈ 0,1 , 𝑖 ∈ 𝐼 ; 𝑛𝑖𝑗
𝑠 ∈ Z+, 𝑖, 𝑗 ∈ 𝐼, 𝑖 > 𝑗 ; 𝑠 ∈ 𝑆.

[2] ෍
𝑗∈𝐼
𝑗>𝑖

𝑤𝑖𝑗
𝑠 −෍

𝑘∈𝐼
𝑘<𝑖

𝑤𝑘𝑖
𝑠 ⋅ 𝑦𝑖

𝑠 ≤ 𝑐𝑠 𝑖 ∈ 𝐼 ; 𝑠 ∈ 𝑆

Maximize the number of 
passengers taking trains in 
stations of S.

Identify the actual demand 
according to the number of 
intermediate stations.

Avoid exceeding train capacity 
when stopped at each station i.

If you choose to pick up travelers from a 
origin-destination pair, you will have to 
stop at both stations.

4 ෍

𝑠∈𝑆

𝑦𝑖
𝑠 ≥ 1 𝑖 ∈ 𝐼,

5 ෍

𝑖∈𝐼

𝑦𝑖
𝑠 ≥ 2 𝑠 ∈ 𝑆,

All stations have at least one 
train that stops in them

Guarantees train configurations 
that at least stop at two stations



SOLVING THE MODEL: GREEDY ALGORITHM (1st Phase)

For each do

• Set

• Read

• Compute 

• Set

• For each do

• While σ𝑠∈𝑆𝑦𝑖
𝑠 ≥ 1 and    σ𝑖∈𝐼 𝑦𝑖

𝑠 ≥ 2

• Set  

• Compute

• Set  

• If                                then                                else   
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ROUTINE Calculate                           (1st Phase)

For each do

• If                                          then                 else

• Set

• For to do

• If then

• Set

• Set
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SOLVING THE MODEL: GREEDY ALGORITHM (2nd Phase) 

• Once the model is solved, we will obtain an optimal solution that will 
indicate the stops that each train must make in its service, in order to 
maximize the number of passengers.

• From this solution, the trains should be classified according to a concept 
of «proximity» between binary chains of 0/1 (not stop / stop) from the 
point of view of an ad hoc defined metric.

• This proximity is one-dimensional in nature. Therefore, we can construct a 
W matrix of inter-distances (from Hamming, or Rectangular, or Euclidean) 
and, based on the method published by Hall in 1970 (where a spatial 
interpretation of maximum eigenvectors of the matrix B = D-W is made), 
we will obtain the relative position on the OX axis of the representative 
points. This relative position will allow us to establish a classification of 
trains and stations in types A and B.

Train 𝑠 = (. . . 𝑦𝑖
𝑠. . . ) = (0/1, . . . , 0/1, . . . , 0/1), 𝑠 ∈ 𝑆.



Hall Method (2nd Phase)

• W = ( 𝑤𝑖𝑗 ) with 𝑤𝑖𝑗 = 𝑦𝑖
𝑗

• Compute D = (𝑑𝑖𝑗) diagonal matrix

𝑑𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗

𝑑𝑖𝑗 = σ𝑘=1
𝑛 𝑤𝑘𝑖 if i=j

• Compute B = D – W.
• Compute the eigenvalues of B and take de 

máximum 𝛼𝑚𝑎𝑥. 
• Compute 𝑣𝑚𝑎𝑥 the eigenvector of 𝛼𝑚𝑎𝑥. It has 

asociated distribution in [-1,1] of points (the
coordinates of 𝑣𝑚𝑎𝑥).

Hall, K. M. (1970). An r-Dimensional Quadratic Placement Algorithm. Management Science, vol. 17 Issue 3, p219-229.



3rd Phase

• We denote trains i, j the points furthest from each other of 
the previous distribution and we set train i like type A and 
train j like type B.

• For each station k, do

– If train i (type A) stop (=1 in k) and train j don’t stop (=0 in 
k) do station k = station type A.

– If train i = 0 and train j=1 in k do station k = station type B.

– If train i = 1 and train j=1 in k do station k = station type AB.

Freyss M., Giesen R. and Muñoz J.C. (2013) Continuous approximation for skip-stop operation in rail transit. Transportation 
Research Part C-Emerging Technologies 36 419-433



3rd Phase

• For each intermediate train m do

– Compute coincidences with i and j.

– Choose the most coincident with m (for example 
i).

– In the no coincident stations, we change the train 
which doesn’t stop (0         1) and change the type 
of the station if required.

Freyss M., Giesen R. and Muñoz J.C. (2013) Continuous approximation for skip-stop operation in rail transit. Transportation 
Research Part C-Emerging Technologies 36 419-433



Example

We have 4 trains and 5 stations in the railway corridor.

As a result of a previous optimization process, the sequence of 
operations stop (1) -skip (0) in the 5 stations for the 4 trains are 
represented vectorially:

1: (1,1,0,0,1)

2: (0,1,0,1,0)

3: (0,1,1,1,0)

4: (0,0,1,1,1)



Example

We constructed the distance matrix W (from 
Hamming, or Rectangular, or Euclidean) 
between each pair of sequences.

1: (1,1,0,0,1)                     row 1: (0,3,4,4)

2: (0,1,0,1,0)                     row 2: (3,0,1,3)

3: (0,1,1,1,0)                     row 3: (4,1,0,2)

4: (0,0,1,1,1)                     row 4: (4,3,2,0)



Example

Let's build from W, matrices D and B, following the 
article. The eigenvalues ​​of the B child matrix 
(ordered from highest to lowest): 14.8482, 11.3273, 
7.82446, 0.

The eigenvalue 0 is always sold by the construction 
of the matrix B. The eigenvalue is equivalent to the 
value of the objective function, whose eigenvector 
gives us the position on the OX axis of the four 
points representative of the sequence vectors.



Example

The eigenvector corresponds to the highest eigenvalue 14.8482
is

-0.848468, 0.128783, 0.312184, 0.407501

which indicates the relative positions of sequences 1, 2, 3 and 4 
on the OX axis. If we graphically represent this 4 points,



Example

Initial assignment:
1: (1,1,0,0,1)            Type A
4: (0,0,1,1,1)            Type B
The stations
St. 1                           Type A
St. 2                           Type A
St. 3                           Type B
St. 4                           Type B
St. 5                           Type A/B



Example

For trains 2 and 3 we calculate the coincidences 
with 1 and 4.
• Train 2: coincidences(1,2) = 1; coincidences(2,4) 

= 2               Type B.
Change train 2 = (0,1,0,1,0)  and train 4 = (0,0,1,1,1) 
to train 2’= train 4’ = (0,1,1,1,1), so we have to 
change Station 2 = Type A to Station 2 = Type AB.
• Train 3: coincidences(1,3) = 1; coincidences(3,4’) 

= 4               Type B.
Change train 3 = (0,1,1,1,0) to train 3’ = (0,1,1,1,1).



Example

Finally,

Trains

1: (1,1,0,0,1)            Type A

2: (0,1,1,1,1)            Type B

3: (0,1,1,1,1)            Type B

4: (0,1,1,1,1)            Type B

There are 4 modifications, 4 new stops.

The stations
St. 1                           Type A
St. 2                           Type AB
St. 3                           Type B
St. 4                           Type B
St. 5                           Type AB



Conclusion

The Skip-Stop operation represents a low cost approach 
to improve the operation speed of the transaction, since 
it does not necessarily require additional investments in 
infrastructure. We have proposed a two-phase 
methodology to optimize both the classification of 
stations and trains based on passenger travel demand 
that varies according to stops that let's eliminate. As 
resolution tools we propose an entire linear programming 
model based on the model of the multiple knapsack and 
a heuristic based on the Hall method.



Future Work

• Improve the mathematical model to take into account 
the possibility of transshipment.

• Study the case that no train stops at a station.

• Study the efficiency of the model.
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