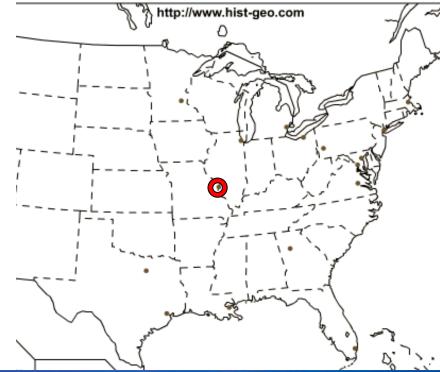

Strategic Design of Drone Delivery Systems

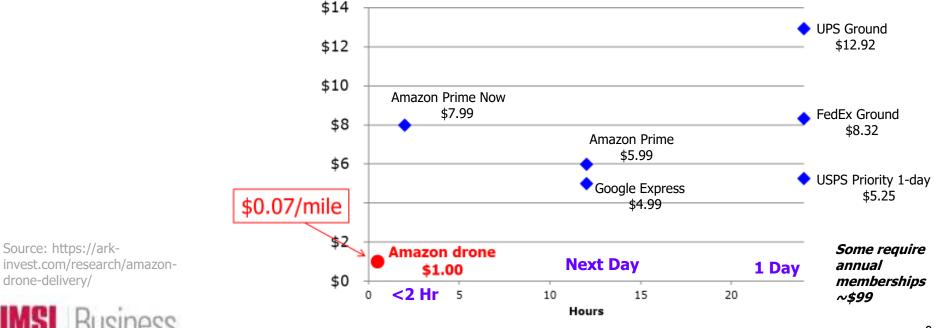
VIII International Workshop on Locational Analysis and Related Problems Segovia, Spain September 2017

James F. Campbell, Don Sweeney, Juan Zhang, Deng Pan *University of Missouri-St. Louis St. Louis, MO*

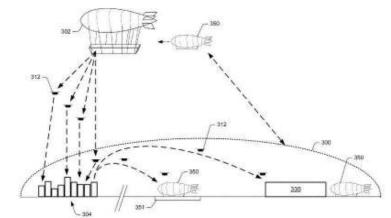


UMSL and St. Louis

- St. Louis:
 - 2.8 million people on the Mississippi River
 - Distribution center
 - Major businesses: Boeing, Anheuser-Busch (AB InBev), Monsanto
 - > University of Missouri-St. Louis



Original Motivation


- 1. Amazon ships >600 million packages/year **amazon**.com
- 2. 86% of Amazon's orders are <5 lbs.
- 3. 73% of customers are willing to pay for drone delivery
- 4. Amazon lost \$7 billion in 2016 on shipping.

Part 1. Commercial Drones and Drone Applications

- Part 2. Strategic Continuous Approximation Model for Delivery with Drones and Trucks
- Part 3. Research Opportunities for Locational Analysis and Related Problems with Drones

Part 1: Aerial Drones = UAVs

- UAVs = Unmanned Aerial Vehicles
 - vehículo aéreo no tripulado? (or UAV)

Ground Drones

• Ground vehicles (UGV) – home delivery

Other Drones

- Sea vehicles/vessels -
 - USV (Unmanned Surface Vessel), AUV (Autonomous Underwater Vehicle) or UUV (Unmanned Undersea Vehicle)
 - Data collection
 - Maritime security and mine counter-measures

Delivery Applications

- Delivery to discrete "customers"
 - Packages
 - Healthcare and humanitarian aid
 - Ongoing operations
 - Blood, medications, vaccines, organs, defibrillators
 - Disaster response
 - > Food, water, medicines, parts, etc.
- Area coverage crop spraying

Sensing and Surveillance Applications

- Cover a region, network or set of points or follow targets
 - Precision agriculture
 - Fire protection
 - Security
 - Disaster response and search
 - Wildlife monitoring and tracking
 - ➤ Imaging:
 - Filming
 - Real estate

Aerial Delivery Drones

- Many different types!
 - Speed: up to 150 km/hr
 - Range: 10 150 km (>1000 km for military drones)
 - Depends on speed, payload, aeronautics, battery or fuel
 - Battery life: 18 60 minutes (weeks for military drones)
 - Payload capacity: 0.5 15 kg
 - Cost: \$1000 \$4000; Battery cost: \$200
 - Delivery stop time: 30 60 secs
 - Operating cost per mile: \$0.01 \$5
- Performance depends on:
 - > Type of drone
 - How it is operated (speed, altitude)
 - Environment weather (temperature, humidity, rain, etc.),
 wind, elevation...

11

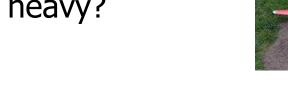
Drone Activities – Part 1

1. Take off: Vertical, runway, catapult

2. Fly: How to model?

 Δz

LMSL Business


- Fixed wing, Rotary wing, Rotocopter \succ
- Dubins Path vs full range of motion \triangleright

Drone Activities – Part 2

4. Sense

LMSL Business

- 5. Deliver: (not for Sensing and Surveillance)
 - Land and release (then must take-off)
 - Lower via tether
 - Drop via parachute
- 6. Land: Vertical, runway, airbag
- 7. Recharge/refuel (extends range)

Use drones when...

- They allow better service and/or lower cost than alternatives
 - Allows high speed (fast) deliveries
 - Reduces cost (and improves safety) by removing human operators
- Alternatives are not available:

Business

- Ground travel is limited by infrastructure, congestion, etc.
- No roads, indirect roads, No working vehicles (trucks, motorcycles, etc.)

Only $\frac{1}{3}$ of Africans live within 2 km of a road that functions year round

Global Healthcare

- Zipline in Rwanda delivers blood in rural Rwanda
 - Makes rare blood types widely and quickly available to 21 hospitals (8 million people)
 - Transports 20% of Rwanda's blood supply outside Kigali
 - Order via text, packed in minutes
 - Delivers up to 80 km away
 - 500 deliveries/day, 24/7, in all weather
 - Expanding to Tanzania, where they plan 2000 drone deliveries per day!

Healthcare Examples

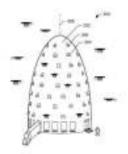
- Defibrillators delivery in the Netherlands
 - In 4.6 mi² region, drones arrive in \sim 1 min vs 10 min by road

- Increased chance of survival from 8% to 80%!
- Clinic in rural Virginia (US) operates 1 weekend each year serving 3000 patients
 - Drones flew medicines from a nearby airport in 3 min. vs
 90 min. by road from a pharmacy 35 miles away.

Hybrid (Tandem) Operations

- Use trucks (or other vehicles) and drones together
- Trucks can launch and/or recover drones away from the depot

- Hybrid operations allow exploiting the advantages of each vehicle:
 - Drones: High speed and direct (straight line) travel
 - Trucks: High payload and can extend the range of service as a launch/recovery platform



Modeling Problems with Drones

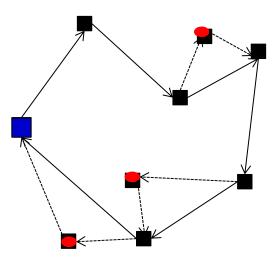
- Facilities to locate:
 - Depots, Launch points, Recovery/landing points, and Recharge points, Drone hubs?
- Travel:
 - Trucks: travel on road network using a particular metric
 - Drones: travel in straight lines; Dubins paths?
- Drones:
 - Range is limited (expressed in distance or time)
 - ➤ May make 1 or >1 delivery per trip
- Demand:

siness

- Delivery is usually one item per customer
- Surveillance and sensing is coverage (e.g., arc routing)
- Customers (or items) have a service (delivery) time limit
- Some customers may not be served by drones
- Other vehicles: Are they "allowed" and can they also make deliveries?

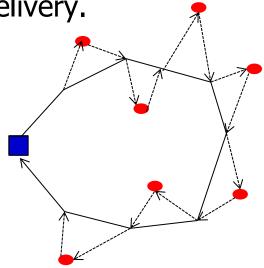
Academic Research

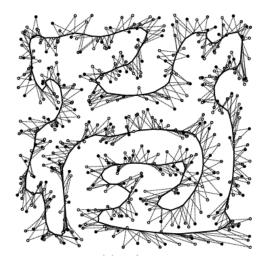
- Quite a bit of research from robotics and engineering, especially in "path planning" (routing)
 - Often algorithms are not very sophisticated
 - Much focus on military & defense applications
- Growing research from the OR community
 - Most focuses on routing (extending TSP and VRP models)
 - Link to electric (ground) vehicle refueling research
 - Networks special issue (Agatz and Campbell) and INFORMS meeting
- Key OR Problems: <u>Routing</u>, <u>Location</u> and <u>Network</u> <u>Design</u>


Academic Research

- Drone-only delivery can be modelled as one-to-many distribution systems or as vehicle routing problems.
- Growing research specific to drone delivery.
- Hybrid truck-drone delivery is new and only a few papers address logistics aspects.
 - ➢ Lin Comp & OR 2008, 2011: hybrid truck-foot courier.
 - > Mathew et al. *IEEE Trans on Auto. Sci. & Eng.* 2015 (Location)
 - Murray and Chu, Trans Res C 2015: "flying sidekick".
 - ➢ Ha et al. 2015, 2016; Ponza 2016; Ferrandez 2016.
 - ➢ Wang et al. Opt Ltrs 2016: worst case analysis.
 - > Dorling et al. 2016: energy consumption.
 - Carlsson and Song Man. Sci. 2017: Continuous Approx.
 - > Otto et al. 2017: Survey paper

Murray and Chu 2015


- Treated as a variation of a VRP, with coordination of recovery time for drone at the truck.
- One drone per truck is launched and recovered only at customer stops.
 - Drone must return to truck at a stop different from where it was launched.
- Two large MILP formulations.
 - Minimize time of return to the depot.
- Solved with heuristics:
 - Build a truck route (TSP).
 - Reassign stops to the drone.
- Also considers serving nearby customers by drone directly from the depot.

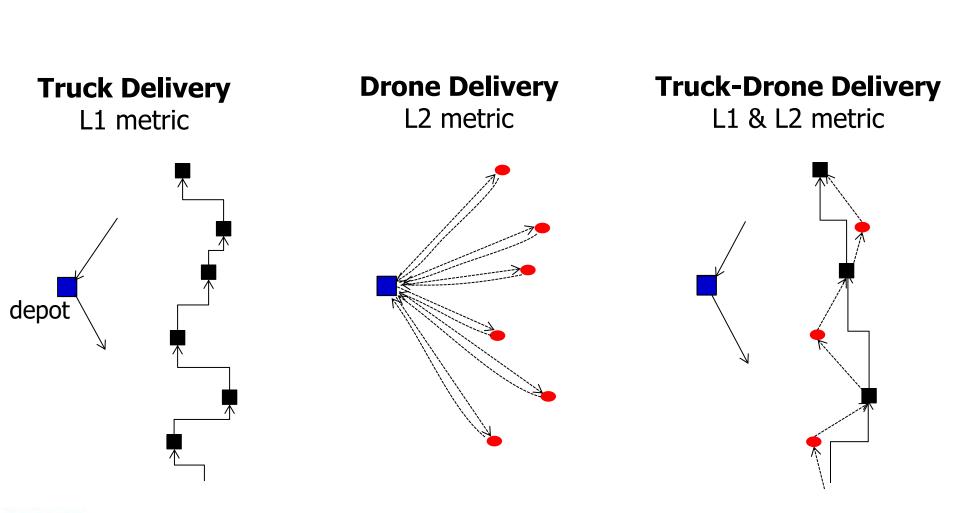

"Flying sidekick"

Carlsson and Song 2017

- Continuous approximation model to provide asymptotic bounds on route to minimize time of last delivery.
 - Extends Beardwood, Halton, Hammersley theoretical TSP tour length analysis to drones.
- One or more drones per truck are launched and recovered from a truck that makes **no** deliveries.
 - Drone may return to truck at the same location from where it was launched.
- Simulation modeling in Los Angeles area to verify results.
- Focus on relative speeds of truck and drones.

Industry Research

- Very active and very dynamic area of research by industry and academic partners...
- Difficult to get details and to keep up with current developments (promotional materials, patents, industry reports, etc.).
- Existing cost analyses vary widely, but suggest using drones may be very efficient!

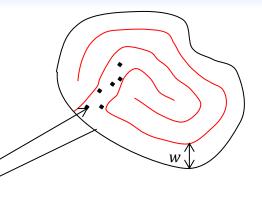

Part 2: Our Focus

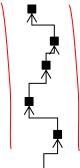
- Strategic analysis of hybrid truck-drone delivery systems.
 - Under what conditions (for customers and drones) does it make sense to use drones?
- Compare truck-drone delivery to drone-only and truckonly delivery.
- Focus on logistic and operational aspects, not regulatory, legal or technical details.

Service Options

Our Approach...

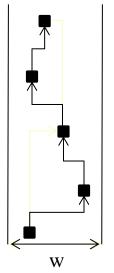
- Use Continuous Approximation (CA) models to derive general insights (instead of extending TSP and VRP models).
 - "Continuous approximation models in freight distribution management", Franceschetti, Jabali, Laporte, TOP 2017.
- Design general minimum cost system for truck-drone delivery, where demand is a continuous density (# of customers per sq. mile) over the service region.
 - Derive expected travel cost expressions based on key parameters of the setting and drones.
 - Analytically optimize equations to find minimum cost designs.


Analyses


- 1. Compare hybrid truck-drone delivery to truck-only delivery.
 - > In what situations is truck-drone delivery useful?
 - How does this depend on the density of customers and key drone operating parameters?
 - > How useful are multiple drones per truck?
- 2. How should a region be served?
 - Divide a region into sub regions where each strategy (truck-only, drone-only, truck-drone) is best?
 - How does this depend on the density of customers and key drone operating parameters?

Basic Continuous Approximation Model

- Truck travels along a swath of width *w* through the service region visiting customers in order (Daganzo 1984).
- Spatial density of customers is δ .
- Model travel with L1 (rectilinear) distance, so truck has horizontal and vertical travel along the swath.
- Optimize swath width using calculus.
- Similar idea with **truck-drone delivery** along the swath...where drone travel is modelled with L2 distance.



Modeling Truck Travel: L1 distance

- Density of customer stops (#/mile²): δ
- Expected horizontal travel distance per stop = $\frac{w}{2}$
- Expected vertical travel distance per stop = $\frac{1}{\delta w}$
- Expected total distance per stop = $\frac{1}{\delta w} + \frac{w}{3}$
- Optimal width for truck alone: $w^* = \sqrt{\frac{3}{\delta}}$
- Truck stop cost (per delivery) = s_t
- Expected truck-only cost per delivery:

$$E_{to} = c_t \left\{ \frac{2}{\sqrt{3\delta}} \right\} + s_t$$

Truck cost per mile

Modeling Truck-Drone Travel

- Truck L1 travel per stop:
 - > Expected horizontal travel distance = $\frac{1}{2}\frac{w}{3} = \frac{w}{6}$
 - > Expected vertical travel distance = $\frac{1}{2} \frac{2}{\delta w} = \frac{1}{\delta w}$
 - \succ Truck stop cost = s_t
- Drone L2 travel per stop:

Expected distance =
$$\sqrt{\left(\frac{w}{3}\right)^2 + \left(\frac{1}{\delta w}\right)^2}$$

> Marginal drone stop cost relative to truck stop cost = s_d

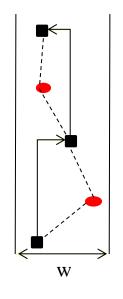
Expected total truck-drone cost per delivery:

$$E_{td} = c_t \left(\frac{w}{6} + \frac{1}{\delta w}\right) + \frac{c_d}{\sqrt{3}} \sqrt{\left(\frac{w}{3}\right)^2 + \left(\frac{1}{\delta w}\right)^2 + \frac{1}{2}s_d} + s_t$$

Drone cost per mile

W

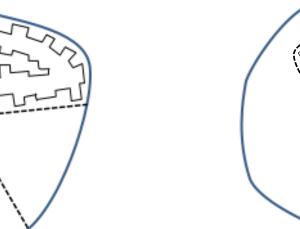
Optimal Swath Width

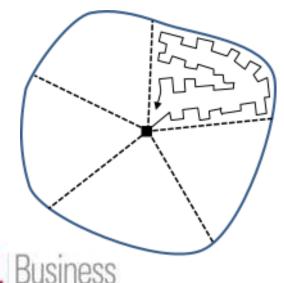

- Optimal width for truck travel alone: $w = \sqrt{2} \sqrt{\frac{3}{\delta}}$
- Optimal width for drone travel alone: $w = \sqrt{\frac{3}{\delta}}$
- Optimal width for truck drone travel

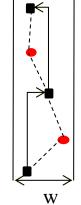
$$w^* \cong \frac{\left(\sqrt{2} + 2\frac{c_d}{c_t}\right)}{1 + 2\frac{c_d}{c_t}} \sqrt{\frac{3}{\delta}} = k^* \sqrt{\frac{3}{\delta}}$$

Expected total truck-drone cost per stop

$$= \frac{1}{\sqrt{3\delta}} \left\{ c_t \left[\frac{k^*}{2} + \frac{1}{k^*} \right] + c_d \sqrt{k^{*2} + \frac{1}{k^{*2}}} \right\} + \frac{1}{2} s_d + s_t$$



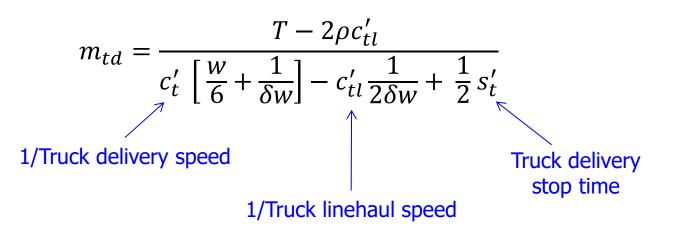

Linehaul Travel

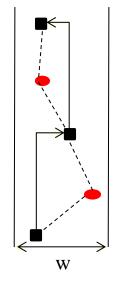

- If truck-drone route is a small fraction of the service region, then there is a linehaul travel to the area of the route.
- Depends on the size of the region!

With five routes, each route is like a TSP tour.

With many routes, there is linehaul distance to and from the start of the route.

Linehaul Cost

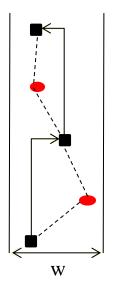

- ρ = expected distance from the depot to a random
 point in the region of area A
 - In a circular region with a depot at the center, $\rho = \frac{2}{3}\sqrt{A/\pi}$.
- For an elongated delivery zone in the region of area A, the expected round-trip truck linehaul cost per delivery to the edge of the zone


$$= c_t \left(\frac{2\rho}{m} - \frac{1}{2\delta w}\right).$$

- *m* = total number of deliveries on the route.

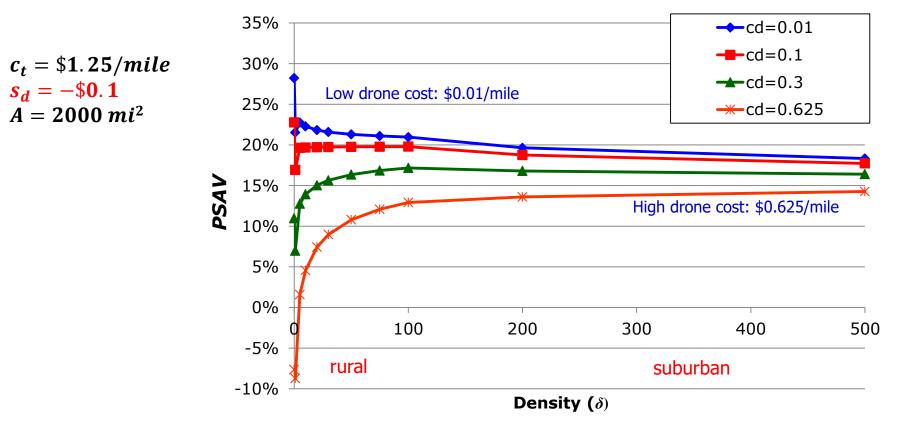
Number of Stops and Route Length

- Route time $\leq T$.
- Assume drones are fast enough that truck does not wait for drones...
- Set *Truck delivery time + Linehaul time = T*.
- > Solve for # of deliveries m_{td}



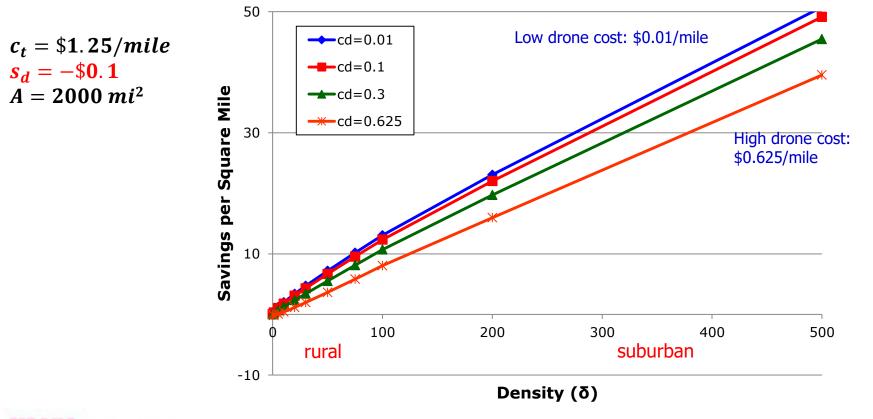
Key Problem Parameters

- Expected total cost depends on:
 - Truck and drone operating cost per mile: c_t, c_d
 - Marginal drone delivery cost per stop (may be positive or negative): *s*_d
 - Truck cost per stop: *s*_t
 - Density of customer stops: δ
 - Area served: A, which determines ρ
 - Number of stops per route: m_{td}


Expected total truck-drone cost per stop with linehaul:

$$E_{td} = \frac{c_t}{\sqrt{3}} \left(1 + \sqrt{2} \frac{c_d}{c_t} \right) \sqrt{\frac{1}{\delta}} + c_t \frac{2\rho}{m_{td}} + \frac{1}{2} s_d + s_t$$

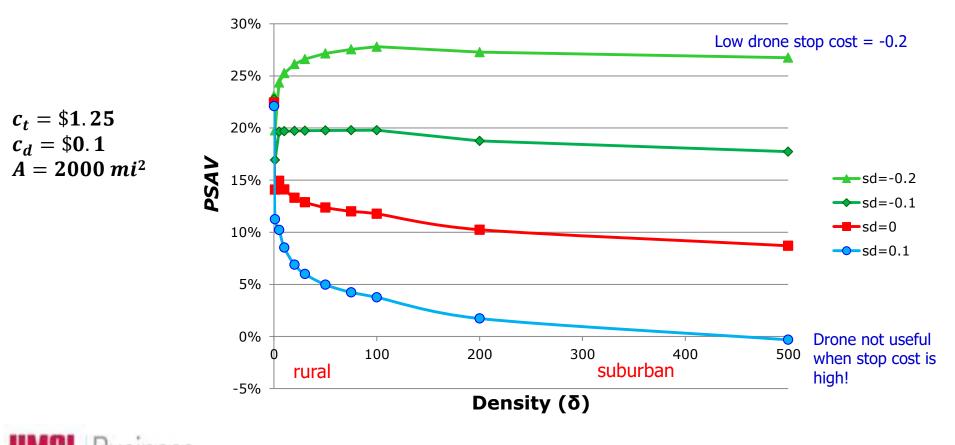
Cost Savings per Delivery with 1 Drone per Truck: 4 Levels of Drone Operating Cost


 Percentage savings <u>per delivery</u> *PSAV* for truck-drone delivery can be large (15-20%), and generally decrease with density of deliveries.

Average US density of households = 33/mile² or 128/mile² in metro areas.

Cost Savings per Sq. Mile with 1 Drone per Truck: 4 Levels of Drone Operating Cost

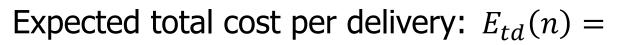
 Savings <u>per square mile</u> for truck-drone delivery can be large (\$50/mi²=18%), and *increase* with density of deliveries.



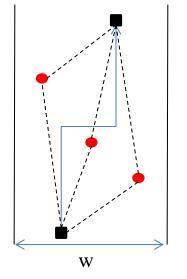
Average US density of households = 33/mile² or 128/mile² in metro areas.

Cost Savings per Delivery with 1 Drone per Truck: 4 Levels of Drone Stop Cost

 Percentage savings per delivery for truck-drone delivery decreases with drone marginal stop cost; generally decreases with density of customers.


Summary of Findings: 1 Drone per Truck

- 1. Hybrid truck-drone delivery can provide large savings with drones used optimally.
- 2. For reasonable parameter values drones should be used a large amount where feasible.
- 3. Attractiveness of drones depends strongly on drone operating cost, marginal drone stop cost and density of stops.
- 4. Savings with drones increases with density of customers, though savings per delivery may decrease.



Multiple Drones per Truck

- n drones are launched and recovered at the truck.
- Expected cost now depends on number of drones n, as well as: c_t, c_d, s_d, s_t, δ, A, w, and m.

$$\begin{cases} c_t \left[\frac{1}{n+1} \frac{w}{3} + \frac{1}{2\delta w} \right] + c_d \frac{2n}{n+1} \sqrt{\left(\frac{w}{3} \right)^2 + \left(\frac{n+1}{2\delta w} \right)^2} \right\} + c_t \frac{2\rho}{m_{td}} + \frac{n}{n+1} s_d + s_t$$

Truck Drone Linehaul Stop costs
Swoth width $w^* = f\left(n \frac{c_d}{2} \right) \times \sqrt{3}$

F	Linehaul Travel	Optimal or Near- optimal Swath Width	Expected Cost
0.5	Yes	$\sqrt{\frac{3}{\delta}}$	$c_t \sqrt{\frac{1}{3}} \left(1 + \sqrt{2}\frac{c_d}{c_t}\right) \sqrt{\frac{1}{\delta}} + c_t \frac{2\rho}{m_{td}} + \frac{1}{2}s_d + s_t$
> 0.5	Yes	$\sqrt{\frac{n+1}{2}}\sqrt{\frac{3}{\delta}}$	$c_t \sqrt{\frac{2}{3}} \frac{1 + \sqrt{2}n\frac{c_d}{c_t}}{\sqrt{n+1}} \sqrt{\frac{1}{\delta}} + c_t \frac{2\rho}{m_{td}} + \frac{n}{n+1}s_d + s_t$
≥ 0.5	No	$\sqrt{n+1} \left[\frac{1 + \sqrt{2}n\frac{c_d}{c_t}}{1 + 2n\frac{c_d}{c_t}} \right] \sqrt{\frac{3}{\delta}}$	$c_t \left[\frac{1}{n+1} \frac{w}{3} + \frac{1}{\delta w} \right] + c_d \frac{2n}{n+1} \sqrt{\left(\frac{w}{3} \right)^2 + \left(\frac{n+1}{2\delta w} \right)^2} + \frac{n}{n+1} s_d + s_t$
< 0.5	Yes	$\frac{\sqrt{n+1} + 2\frac{c_d}{c_t}}{\sqrt{2} + 2\frac{c_d}{c_t}} \sqrt{\frac{3}{\delta}}$	$c_t \left[\frac{1}{n+1} \frac{w}{3} + \frac{1}{2\delta w} \right] + 2c_d \frac{n}{n+1} \sqrt{\left(\frac{w}{3}\right)^2 + \left(\frac{1}{\delta w}\right)^2} + c_t \frac{2\rho}{m_{td}} + \frac{n}{n+1} s_d + s_t$
< 0.5	No	$\frac{\sqrt{n+1} + 2\frac{c_d}{c_t}}{1 + 2\frac{c_d}{c_t}} \sqrt{\frac{3}{\delta}}$	$c_t \left[\frac{1}{n+1} \frac{w}{3} + \frac{1}{\delta w} \right] + 2c_d \frac{n}{n+1} \sqrt{\left(\frac{w}{3}\right)^2 + \left(\frac{1}{\delta w}\right)^2} + \frac{n}{n+1} s_d + s_t$

F = fraction of stops by drones

Swath width $w^* = f\left(n, \frac{c_d}{c_t}\right) \times \sqrt{\frac{3}{\delta}}$

Data for Drone Modeling

- What are appropriate values for:
 - > Truck operating cost per mile: c_t
 - > Drone operating cost per mile: c_d
 - Marginal drone delivery cost per stop (positive or negative): s_d
 - > Number of stops per route: m_{td} , m_{to}
 - \succ Density of customer stops: δ
 - \succ Area served: A

Costs for Drone Modeling

- From Ark Invest 2016:
 - 400 million packages/year are drone eligible for Amazon: <5 lbs and within 10 miles of a depot.
 - 30 deliveries per drone per day.
 - 40,000 drones and 90,000 batteries.
 - 6000 drone operators & 10-12 drones per operator.

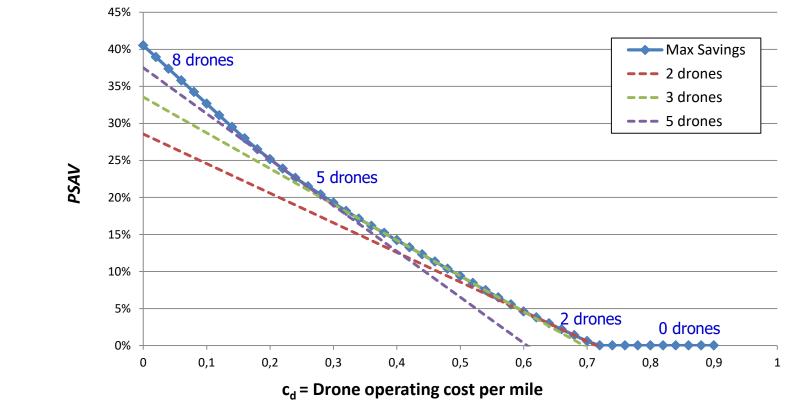
	Category	Annual cost		
Capital costs	Infrastructure	\$50 million		
	Drones and batteries	\$80 million		
Operating costs	Labor: 10-12 drones per operator	\$300 million	lion	
	Data bandwidth	\$25 million		
	Maintenance and electricity	\$25 million		
Total		\$1/delivery	\$0.07/mile	
MSL Business	With 6 drones per operator: §	\$0.11/mile		

Data for Drone Modeling

- > Truck operating cost per mile: $c_t = 1.25 /mile
- > Drone operating cost per mile: $c_d =$ \$0.01 to \$0.30/mile > Base case $c_d =$ \$0.10/mile
- > Marginal drone delivery stop cost: $s_d = -\$0.20$ to \$0.10/stop
- Number of stops per route based on 8 hour routes
- > Density of customer stops: $\delta = 0.01 500/\text{mile}^2$
- > Area served: $A = 2000 \text{ mile}^2$

Illustration

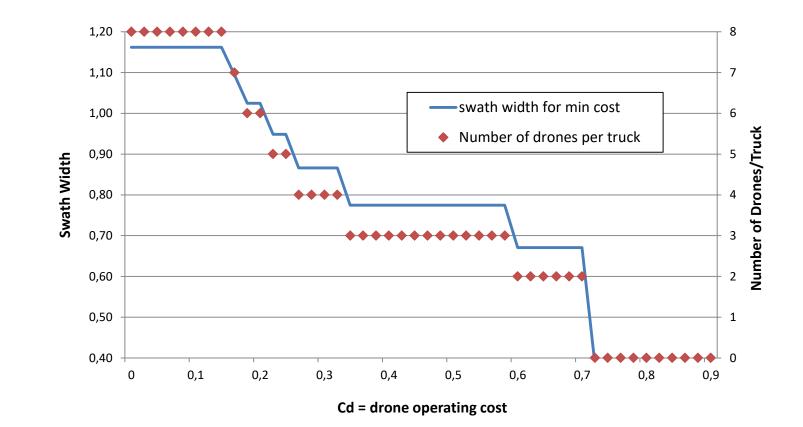
• Models produce reasonable values for routes.


	$\delta = 0.1$ /square mile rural		$\delta = 50$ /square mile suburban			
n	0	1	2	0	1	2
Swath width (miles)	5.5	7.4	8.8	0.17	0.24	0.30
Number of truck deliveries per route	40.2	29.1	24.0	290.2	262.7	242.0
Number of drone deliveries per route	0	29.1	47.9	0	262.7	484.1
Average truck route length (miles)	146.6	150.3	152.0	71.8	80.5	86.0
Average drone travel distance per drone delivery (miles)	-	5.6	6.8	-	0.23	0.28
Number of routes as a % of truck only routes	-	69.0%	55.8%	-	55.2%	40.0%

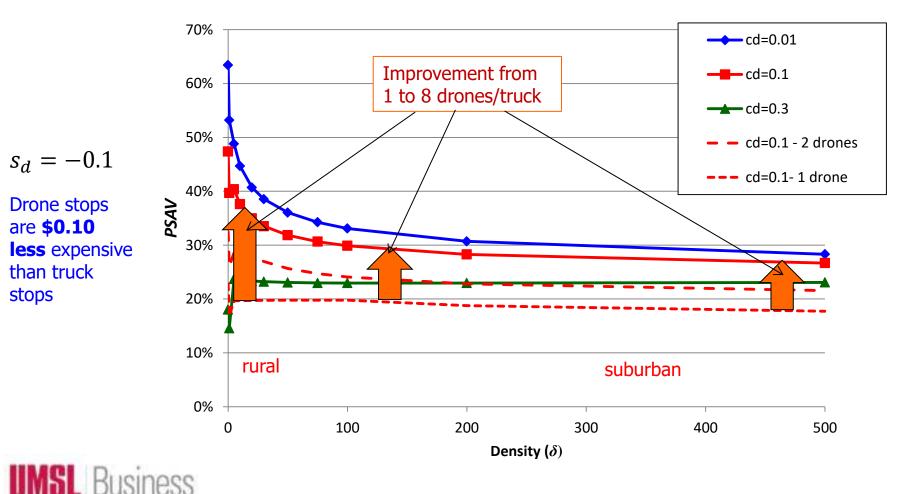
- As delivery density increases, route length decreases, number of deliveries increases, and drone travel distance decreases.
- As # of drones per truck increases, route length increases slightly, number of deliveries increases, and drone travel distance increases a little.

UMSL Busines

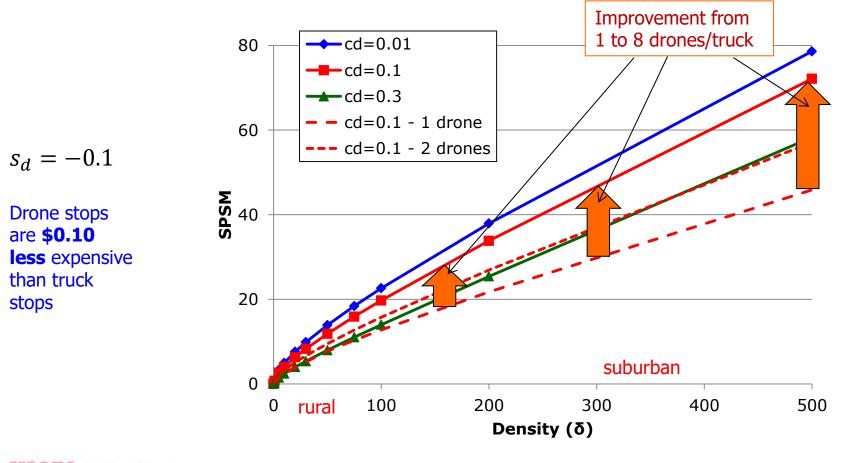
Percentage Cost Savings with 1-8 Drones per Truck


 Multiple drones per truck are beneficial; the optimal number of drones decreases with increasing drone cost.

Isiness

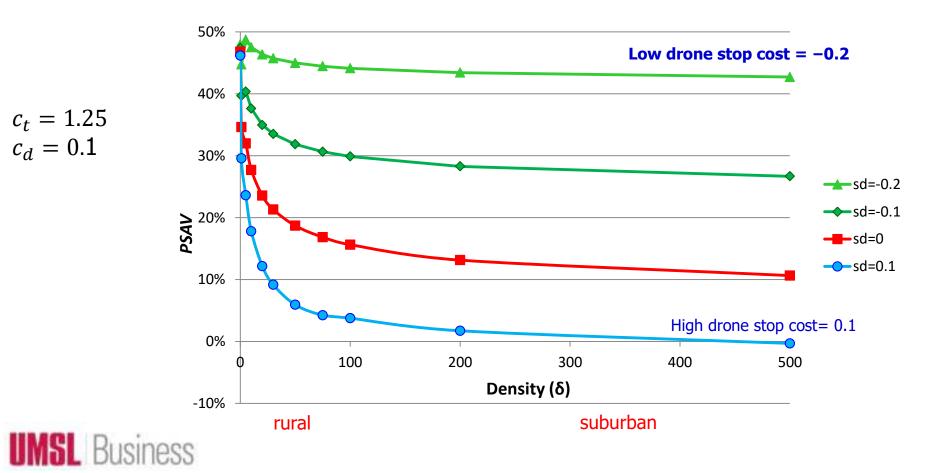

Swath Width and # of Drones per Truck

• Swath width and # of drones per truck decrease as drone cost increases.

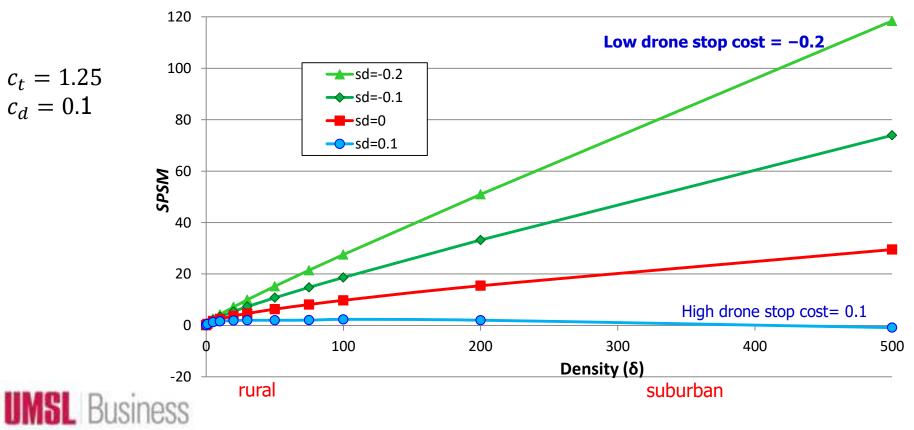

Up to 8 drones/truck: Marginal drone stop cost = -0.1

• Savings per delivery are up to 63%, but decrease with density.

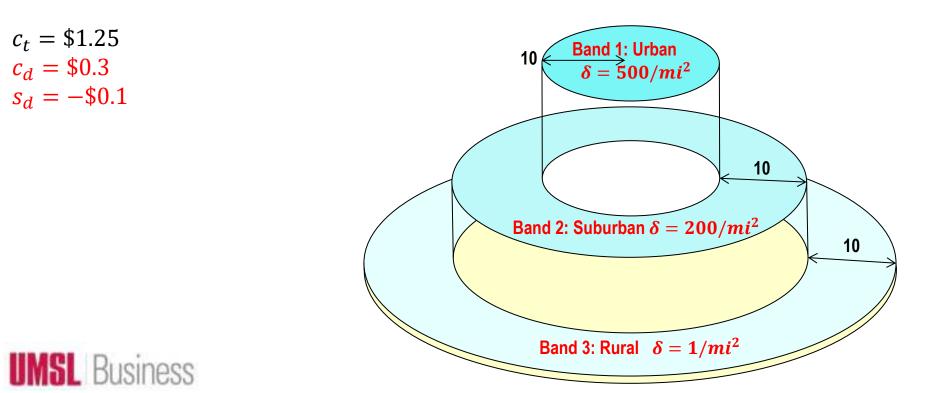
Marginal Drone Stop Cost = -0.1


• Savings per mile² increase with density...up to \$68/ mile² for $c_d=0.1$

UMSL Business

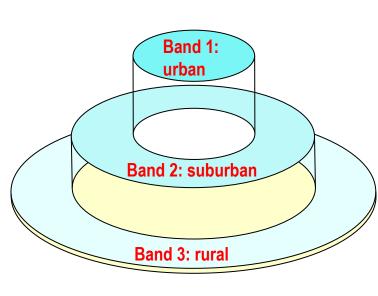

Cost Savings for 4 Levels of Drone Stop Cost: $c_d = 0.1$

- Multiple drones per truck are very beneficial.
- Savings remain large if drone stop cost is small.


Cost Savings for 4 Levels of Drone Stop Cost: $c_d = 0.1$

- Savings intensity (\$/mile²) increases with density and can be large!
- Multiple drones per truck are very beneficial! (up to \$118/mile²).

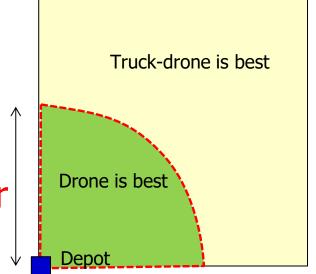
Illustration with 3 Regions


- Consider a circular region of radius 30 miles with an urban core and a depot at the center.
- How would truck-drone delivery serve the region?

Illustration

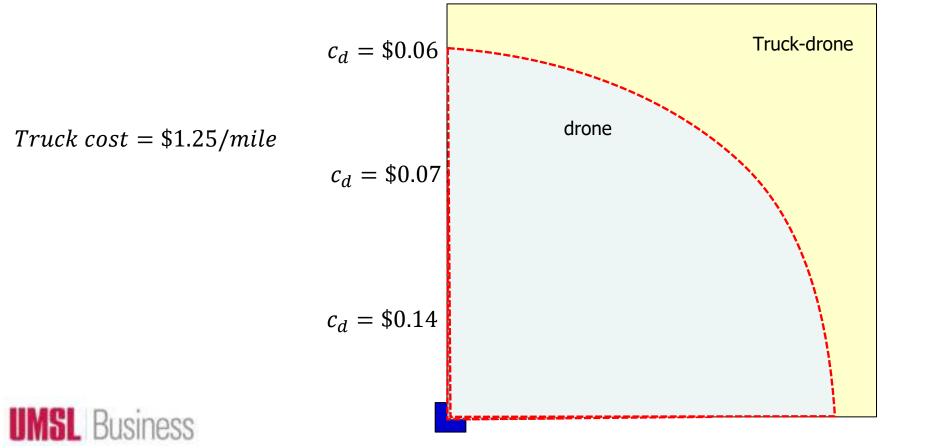
- Optimal drone use varies across the region!
- Greatest savings are not from the region with the greatest % savings per stop (PSAV).

	Band 1	Band 2	Band 3	
	0-10 miles	10-20 miles	20-30 miles	
Delivery density	500	200	1	
# of routes	261.8	314.2	5.3	
# deliveries/route	600	600	296.5	
# of drones/truck	8	7	5	
PSAV	24.4%	27.0%	32.1%	
SPSM	\$65.1	\$33.5	\$0.85	
% of area	11.1%	33.3%	55.6%	
% of deliveries	45.2%	54.3%	0.5%	
% of total savings	38.3%	59.2%	2.5%	


 $c_t = 1.25

 $c_d = 0.3

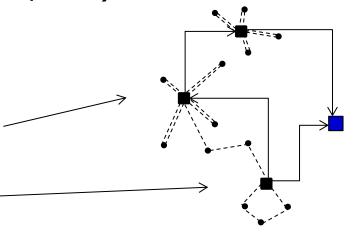
 $s_d = -$ \$0.1


Divide a Region into Subregions

- Serve a region from a fixed depot with the best mix of (i) truck-only, (ii) drone-only or (iii) truck-drone delivery.
 - > Depending on costs, any combination may be best...
- Common pattern is to use drones near the depot and use truck-drone routes farther from the depot.
 - Dividing line depends on drone operating and marginal stop costs.
 - Compare costs of 3 options to identify which is best.

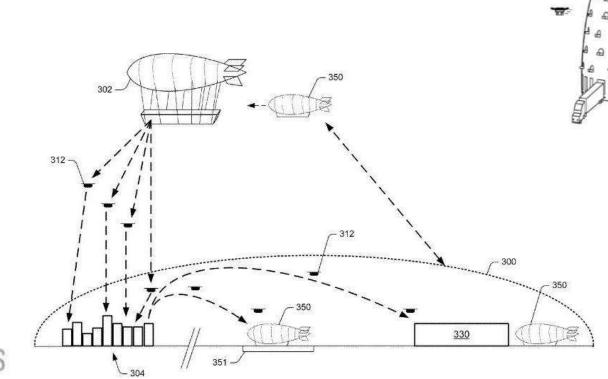
Findings: Divide a region

• Dividing line can be found numerically; it is a nonlinear function of drone and truck operating costs.


Conclusions

- Hybrid truck-drone routes seem attractive in many settings, with largest benefits generally in denser regions (suburban areas)
 - For current proposed cost structures, drones would likely be heavily used in some areas.
- Allowing **multiple drones per truck** is very attractive.
- Drone use depends strongly on drone marginal stop cost and drone operating cost.
- **Multiple strategies** are best with drone only close to the depot and truck-drone delivery farther away.

Future Research


- Incorporate service requirements as time limits on delivery (30 minute, 1 hour, 2 hour, etc.).
- Assess cost-service trade-off.
- Model multiple drones per truck.
- Model multi-stop drone routes.
- Evaluate use of specific drone models.
- Case studies for rural, suburban, urban, regions.

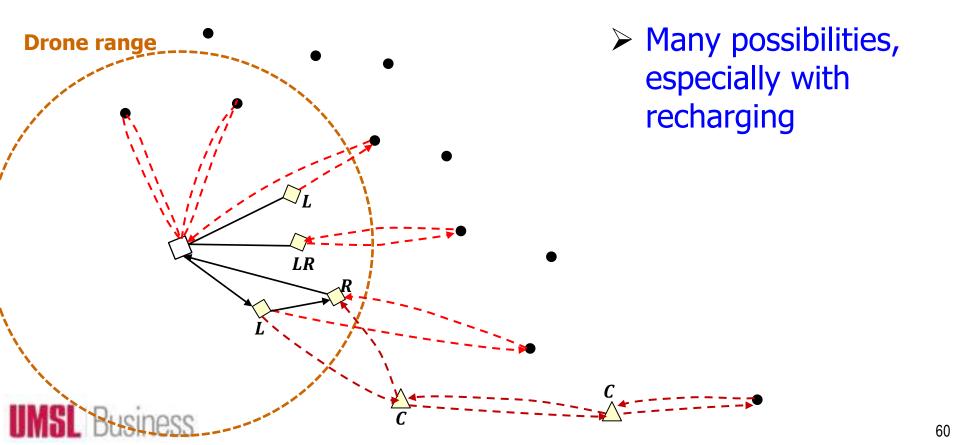
Part 3: More Future Research

- Blimp drone warehouses and Drone hives!?
- Location problems for drone delivery.
- Arc routing with drones.


Location Problems with Drones

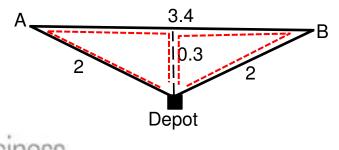
- Locate depots, launch points, recovery points and recharge points (discrete and continuous)
- Objectives:
 - Minimize cost to serve demand (deliver to points, cover a network, cover an area)
 - Maximize the area served from 1 or n depots
 - Minimize time to serve all demand
 - > Minimize the Max time to serve demand
- Can formulate as covering problems....
 - Trucks and Drones: Two echelons
 - Location-Routing problems

Location Problems with Drones


- Locate launch (*L*) and recovery (*R*) points to extend the range
- Can also locate recharge points (C)

Location Problems with Drones

- L =launch point; R = recovery point
- *C* = recharge point

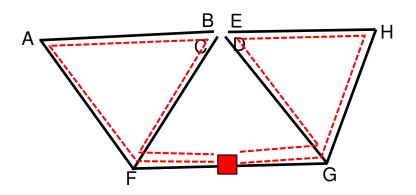


Arc Routing with Drones

- Drones service the arcs.
- Drones can follow the network or not!
- Drone may start and end coverage of an arc at any point on the arc.
- Drones have a "capacity" limit on travel distance.
- Minimize the cost (or time) to service all required arcs.

1. Drone Arc Routing Problem – DARP

Drones start and end at a given depot.



Drone has capacity 4

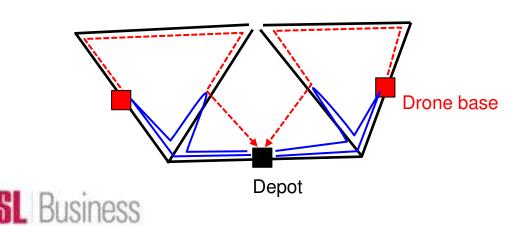
Arc Routing with Drones

2. Drone Depot Location and Arc Routing Problem -DDLARP

- Locate one or more depots (drone bases) on the network. Drones start and end at a depot – or at the same depot.
- Minimize the # of depots, cost of depots, or total cost for depots and routes (or time for all routes)
- Drone travel distance $\leq B$

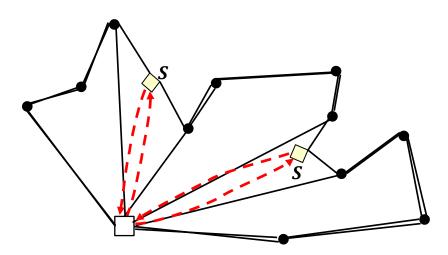
Each arc length = 2 Drone and Truck have capacity 8

2 truck depots required at F and G Truck length = 28


1 drone depot required Drone length = 16

Arc Routing with Drones

3. Drone Depot and Base Location and Arc Routing Problem - DDBLARP


- Locate one or more depots and one or more drone bases (launch/recovery points) on the network.
- Truck drives from depot to a base to launch and/or recover drones.
- Drones start and end at a depot or a base.
- Minimize the # or cost of depots and bases, or total cost for depots, bases and routes.

Each arc length = 2 Drone has capacity 5 Truck has capacity 6

Drones for Resupply of Delivery Vehicles

- Use large drones to resupply delivery vehicles (trucks, bikes) in the field with packages.
 - Vehicles do not need to return to the depot for resupply.
- Locate resupply points, S.
- Interacts with routing...

In Summary...

- Many opportunities for good OR work on problems with drones...
- Costs and performance and not yet known (very well)...
- Combining drones and other vehicles adds richness and complexity...
- Assessing usefulness of drones requires better understanding nearoptimal designs and near-optimal operations...

Matternet Launching First Permanent Autonomous Drone Delivery Network In Switzerland

September 25th, 2017 by James Synt

The world's first permanent autonomous drone delivery network (as far as I know) will begin operating in Switzerland in October — transporting vanous diagnostics material, including blood tests, between various clinics, labs, and hospitals in the region.

The dross anticod is being and breather by the location from

Thank you

