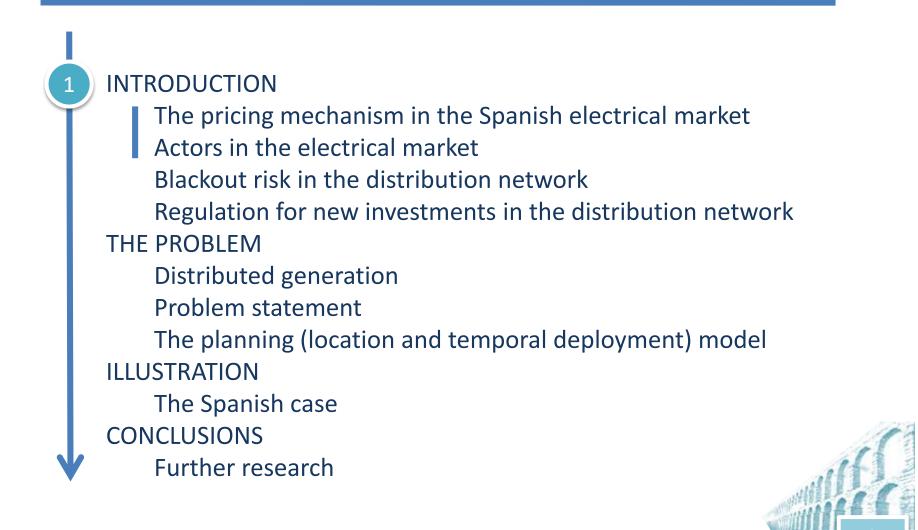


Blackout risk mitigation by using distributed gas turbine generation: An application to the electrical Spanish distribution network


David Canca, Ángel Arcos, Fernándo Núñez

Dpto. Organización Industrial y Gestión de Empresas I.

Universidad de Sevilla

International Workshop on Locational Analysis and Related Problems Segovia, September 27-29, 2016

OUTLINE

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

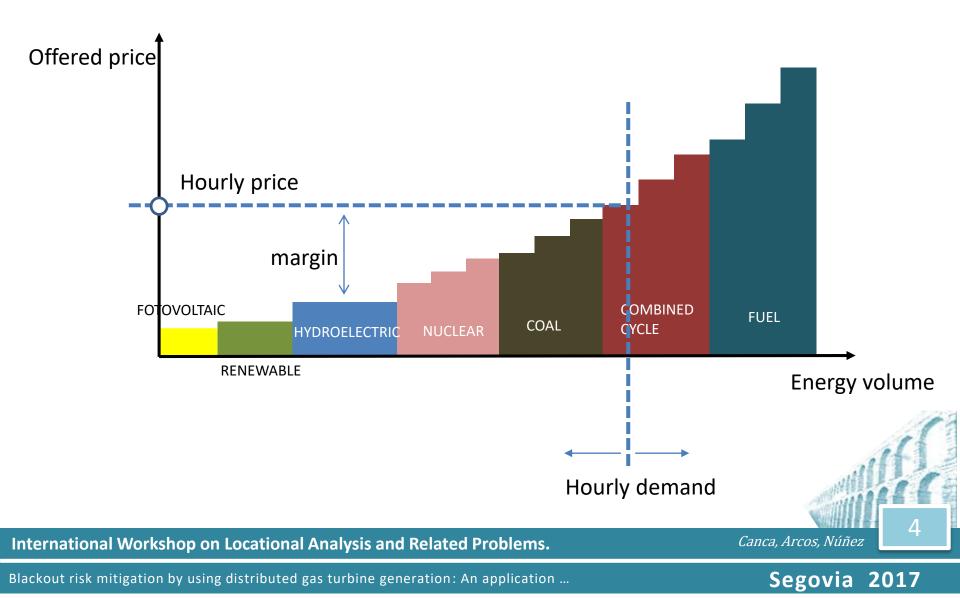
Blackout risk mitigation by using distributed gas turbine generation: An application ...

The electricity price is mainly the consequence of a regulated equilibrium between electricity supply and demand.

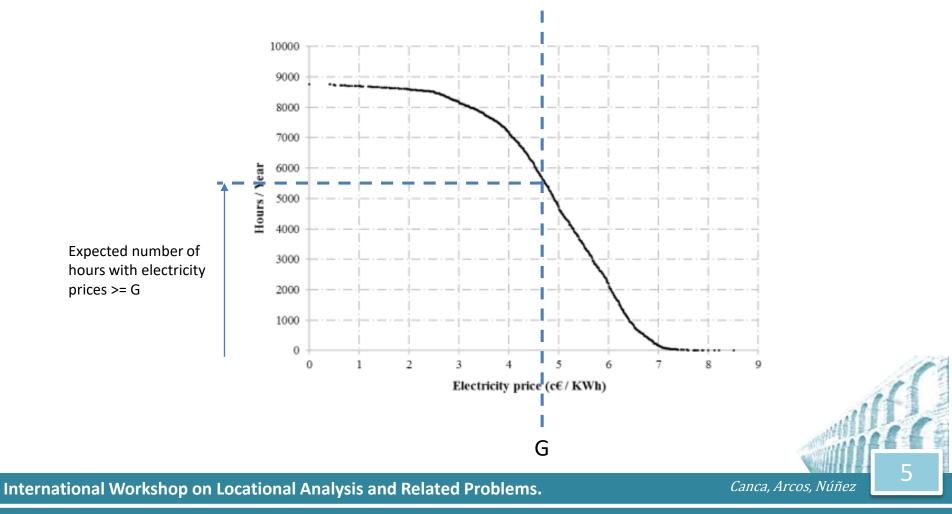
Generation is performed using different technologies, each one with a different marginal cost (€/Mwh). In practice, different generators using the same technology may incur in a different marginal production cost.

For some technologies (for instance those related with the sun energy or the wind) the capacity of production varies along the day and the season.

The electricity price is fixed accordingly to an hourly public auction where, in theory, each generator offers a price which should be greater than its marginal cost* (price > marginal cost).

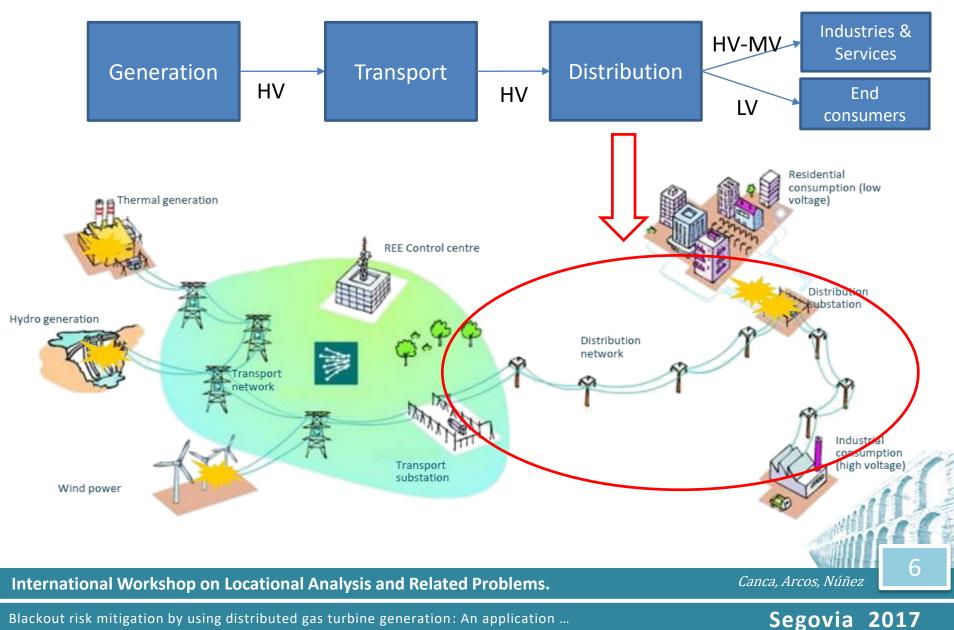

The hourly price is fixed as a function of the demand. As the marginal production cost depends on the technology, the price is fixed to higher marginal cost among the necessary generators (depending on its production capacity) so that the expected demand is fulfilled.

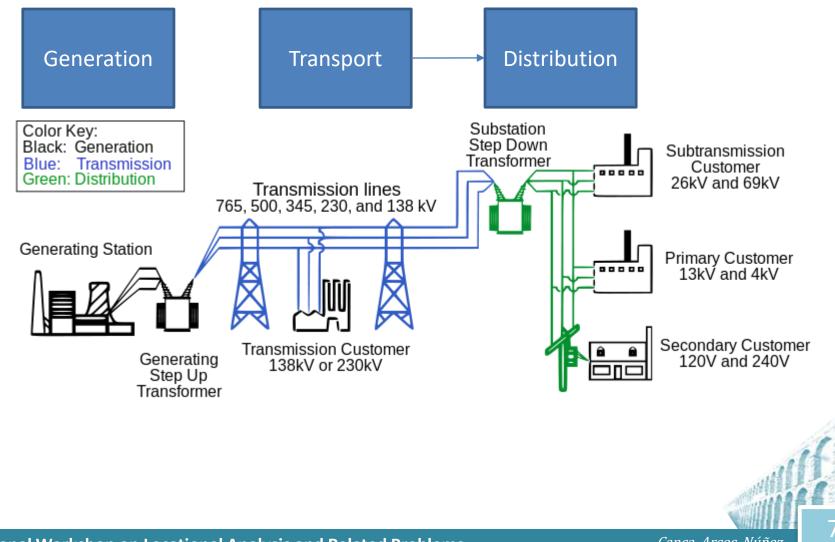
International Workshop on Locational Analysis and Related Problems.


Blackout risk mitigation by using distributed gas turbine generation: An application ...

Canca, Arcos, Núñez

Generation cost depending on generation technology and pricing mechanism

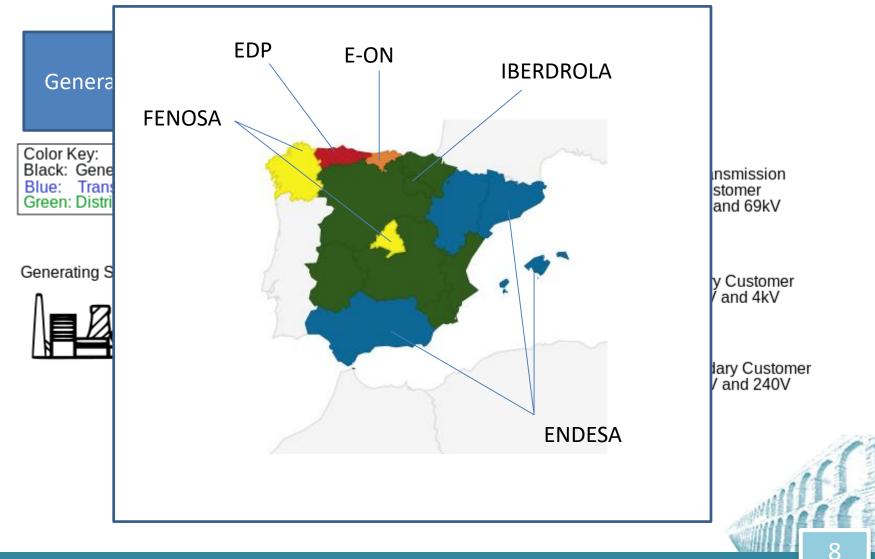

Monotone curve of electricity prices (Spain 2015) vs cumulative number of hours Annual number of hours with price greater than certain value



Blackout risk mitigation by using distributed gas turbine generation: An application ...

The electrical market. The liberalized situation. Actors.

Commercialization



International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

OUTLINE

INTRODUCTION The pricing mechanism in the Spanish electrical market Actors in the electrical market Blackout risk in the distribution network Regulation for new investments in the distribution network THF PROBLEM **Distributed generation Problem statement** The planning (location and temporal deployment) model **ILLUSTRATION** The Spanish case CONCLUSIONS Further research

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

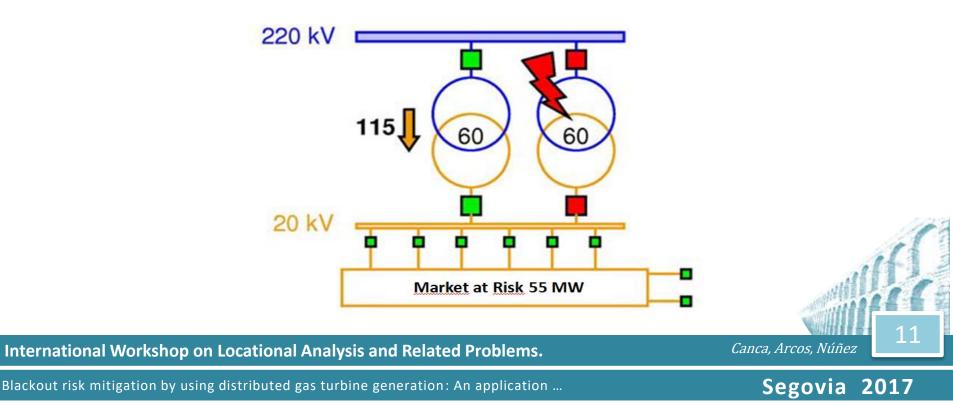
Blackout risk mitigation by using distributed gas turbine generation: An application ...

<u>Point at risk</u>

In the electrical distribution business, critical points (or points of risk) are those elements in which **the network does not verify the planning criteria. Contrary to transmission** (transportation) networks, distribution networks haven't had so far a set of official planning criteria, although each distribution company develops its own planning criteria which, once authorized by the Administration, are mandatory.

Planning criteria

The most common accepted criterion for planning HV (High Voltage) and substation networks is the so called "N-1" criterion. This criterion requires that the system musts cover the simple failure of any HV element (overhead line, cable or transformer) along all the hours of the year, i.e. it obliges to oversize the installation in order to cover the demand even if a component fails.


International Workshop on Locational Analysis and Related Problems.

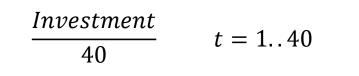
Blackout risk mitigation by using distributed gas turbine generation: An application ...

To illustrate this definition, see Figure 1, suppose that a substation 220/20 kV is being analyzed. In this substation there are two 60 MVA transformers which feed a market with a peak demand of 115 MW. In a full availability situation, the substation can achieve a demand up to 120 MW (full capacity power). In the case of a 60 MW transformer failure, the maximum power that the substation can feed is of 60 MW.

As the market demand is, in the considered case, 115 MW, the consequence of this failure will be a 55 MW blackout, this amount is called power at risk.

Regulation for new investments in the distribution network

As the electricity supply is an activity of public interest, each new installation (in order to fulfil the demand or avoiding risk) is supported by public founds according to the next rules:


The investment needed to solve the risk (installing new transformers or extending lines), once approved, is refunded to the distribution company from authorities during 40 years:

1) Interests of the investments at an annual rate of 6.5% following a decreasing remuneration law :

Investment
$$\left(1 - \frac{t}{40}\right)(0.065)$$
 $t = 1 \dots 39$

2) These quantities have to be increased in a percentage of 2% over the investment that considers the need of maintenance during 40 years.

3) The refund affects also the depreciation computed along a time horizon of 40 years at a constant value.

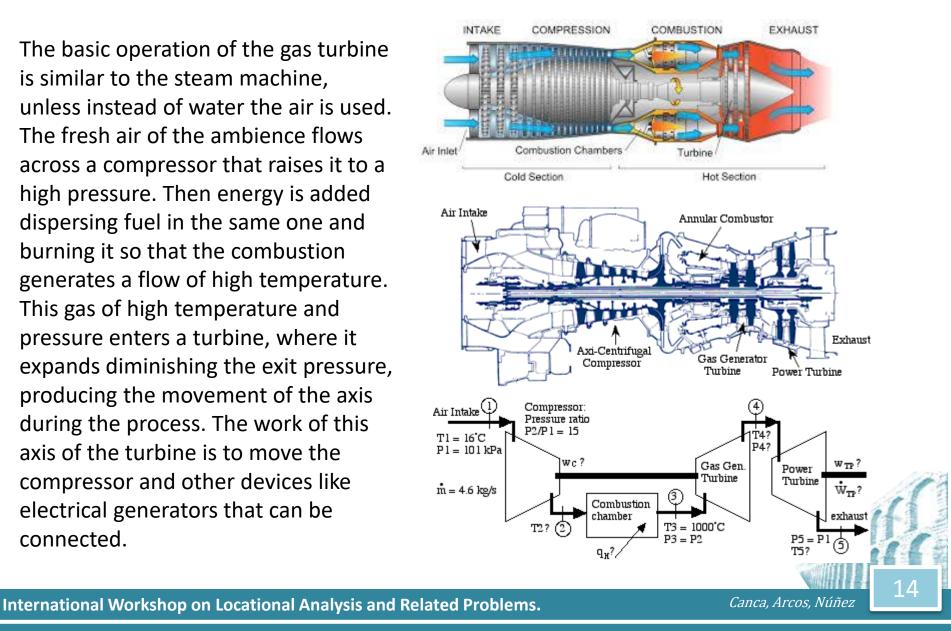
International Workshop on Locational Analysis and Related Problems.

Blackout risk mitigation by using distributed gas turbine generation: An application ...

Segovia 2017

Canca, Arcos, Núñez

INTRODUCTION The pricing mechanism in the Spanish electrical market Actors in the electrical market Blackout risk in the distribution network Regulation for new investments in the distribution network THF PROBLEM **Distributed generation Problem statement** The planning (location and temporal deployment) model **ILLUSTRATION** The Spanish case CONCLUSIONS Further research

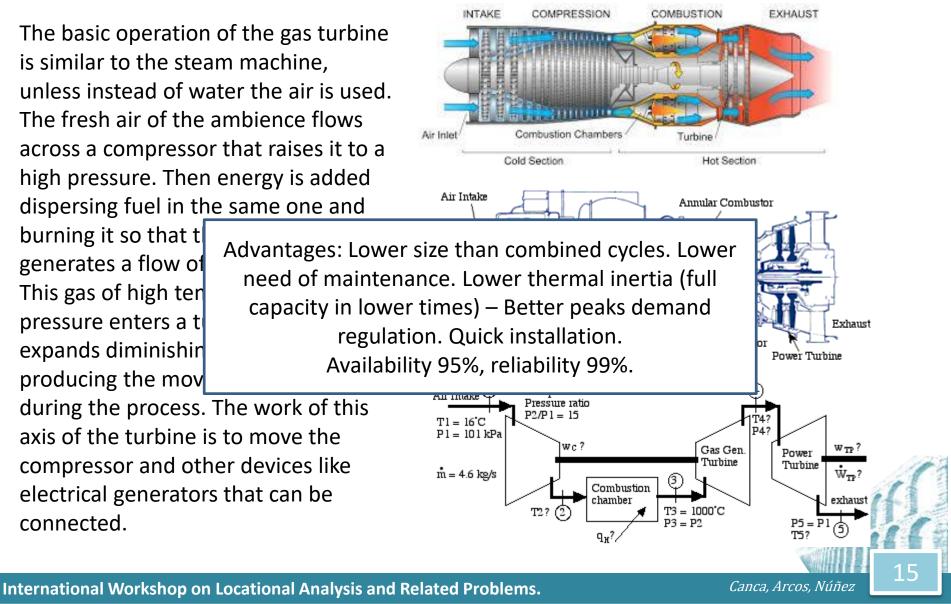

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

THE PROBLEM

The basic operation of the gas turbine is similar to the steam machine, unless instead of water the air is used. The fresh air of the ambience flows across a compressor that raises it to a high pressure. Then energy is added dispersing fuel in the same one and burning it so that the combustion generates a flow of high temperature. This gas of high temperature and pressure enters a turbine, where it expands diminishing the exit pressure, producing the movement of the axis during the process. The work of this axis of the turbine is to move the compressor and other devices like electrical generators that can be connected.


Blackout risk mitigation by using distributed gas turbine generation: An application ...

The basic operation of the gas turbine is similar to the steam machine, unless instead of water the air is used. The fresh air of the ambience flows across a compressor that raises it to a high pressure. Then energy is added dispersing fuel in the same one and

burning it so that t generates a flow of This gas of high ten pressure enters a t expands diminishin producing the mov

Advantages: Lower size than combined cycles. Lower need of maintenance. Lower thermal inertia (full capacity in lower times) – Better peaks demand regulation. Quick installation. Availability 95%, reliability 99%.

during the process. The work of this axis of the turbine is to move the compressor and other devices like electrical generators that can be connected.

Segovia 2017

Distributed generation

Installation of energy generation sources (gas turbines) in a distributed way at certain points in the network with the aim of mitigating the blackout risk at points at risk. Eventually, when no blackout situations exist, these sources can produce electricity and shell it in the market.

Problem statement

Given a set of points at risk and a set of feasible gas turbines the planning problem consists in determining the convenience of installing turbines at several points at risk, choosing the appropriate turbine model and the year of installation, taking into account turbines supply restrictions (manufacturers capacity) while maximizing the Net Expected Profit (Net Present Value of investment). To this end, , the existence of an incentive to encourage DG about the location of turbines near the power at risk points in the network, namely network remuneration, is considered.

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

In order to analyze the possible strategies derived from the use of gas turbine distributed generation, two different mixed integer programming optimization planning models have been developed (Paper in Energy, forthcoming).

The Distribution System operator point of view

The first one (M1) (Not illustrated in this presentation) imposes a global network agreement among DSO and generation companies in order to cover all the point at risk in the network. As the model M1 ensures the covering of all point at risk with power at risk lower than 50 MW, and the partial covering of risk points with power at risk above 50 MW, this model mainly represents the interest of DSO and can be viewed as a "global risk solving" model.

Generators point of view

A second model, **showed in this presentation**, M2, leaves full freedom to DG's to choose where install a source of generation on the locations proposed by the distributor and, in this case, what type of turbine, attending its own interests. The model provides the temporal installation plan of turbines along certain planning horizon, maximizing also the net present value under turbine supply limits. As the model M2 relaxes the covering obligations of M1, solutions are guided by the expected profit of DG's. Thus, **this model mainly represents the interest of DG's and can be viewed as a "business opportunity" model.**

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

THE PROBLEM: Model parameters

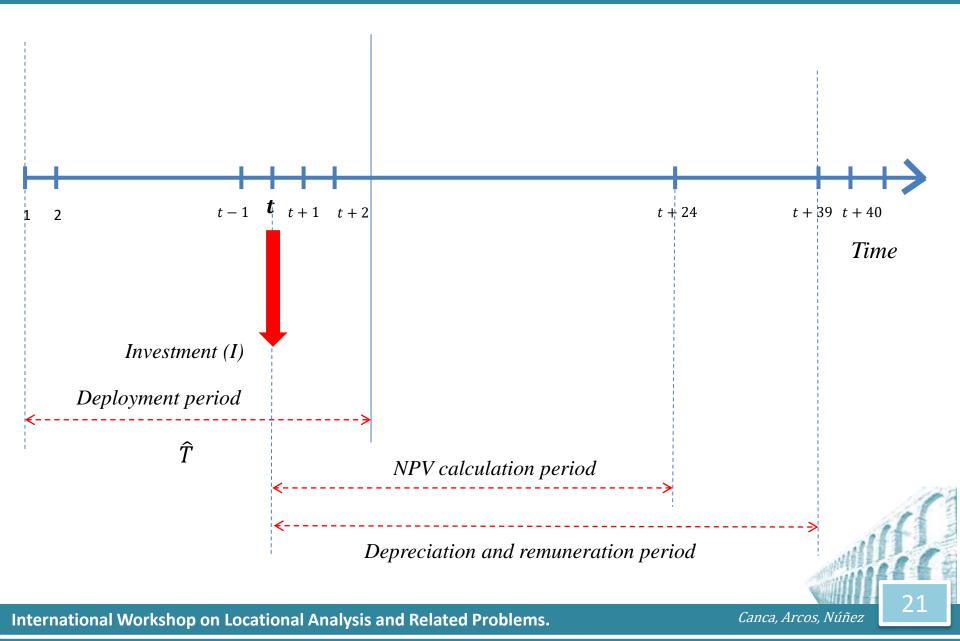
Variables

Î	Number of periods (years) needed to complete the installation of power turbines).	Sets	
\overline{T}	Number of periods needed to amortize investments (usually 40 years).		(1 if the turbine model $i \in N$ is installed in year $t \in T$
T	Total planning horizon, $T = \{1, 2,, \hat{T} + \overline{T}\}.$	x_{i}	$jt = \{$ to solve the power at risk of location $j \in D$,
Ť	Number of years employed to compute investment analysis (usually 25 years).		(0 otherwise,
N	Set of power solutions (gas turbine models) with nominal power up to $\{1, 2, \dots, NT\}$.		$i \in N, j \in D, t \in \widehat{T}.$
C_i	Cost of turbine model $\in N[\epsilon]$.		(1 if the installed power at point of risk j
P_i	Power of turbin $i \in N[MW]$.		
E_i	Efficiency of $i \in N$ [%].	τ_j	$is greater than PD_j (PD_j \le PD^{max}),$
D	Set of points at lectrical distribution network, $D = \{1, 2,, ND\}$.	g	(0 otherwise,
PD _j	Electric power at ion $j \in D[MW]$.	õ	$j \in D.$
CS _j	Total estimated cos the deficiency j by direct intervention on the distribution r		
	the deficiency <i>j</i> by direct intervention on the distribution r conventional methods		
G	Price of gas $[\notin/kWh]$		
MC _i	Marginal cost of turban N obtained from the price of gas and the turb		
	$MC_i = G/E_i$ $i \in N$.		/
CM_i	Cumulative margin of turbine model $i \in N \left[\frac{\epsilon}{kW} \right]$.	US NS	In Spain, power installations bigger
	- , -	Initial calculations	
AM_i	Average margin of turbine model $i \in N \ [\epsilon / kWh]$.	at	than 50 MW require environmental studies
TM_i	Total annual margin of turbine model $i \in N$ [\notin /year].	5	and a set of bureaucratic measures that
H_i	Number of hours per year of use of turbine model $i \in N$ attending historical provided by the power monotone curve $[h/year]$.	a	in practice, do impossible the use of,
\widehat{P}_k	Forecast price of electricity per hour in the monotone curve of prices for	<u> </u>	distributed generation as a realistic alternative.
rk	[1,2,, K][\in / kWh].	tia	Ū.
CH_k	Cumulative number of hours at price $\langle = P_k$ in the cumulative curve of electric	<u> </u>	
UTT _K	$\{1,2,,K\}$ [h/year].	-	
α	Parameter of remuneration. Represents a % of the cost of solving each pow	1	
	location. It can be viewed as an incentive to the Distributed Operation Con		
	installation of turbines close to the risk point instead of installing in a more prof	S	123
r	Discount rate.	E	
β	Additional charge due to engineering analysis, turbine installation and loyal per	Ĕ	11
РОМ	Percentage of the network maintenance costs	Parameters	
MT _{it}	Maximum number of turbines of model i supplied in year t by the manufacture	ba	
ρ	Regulated rate of remuneration. Accordingly to the Spanish regulation, distribut	1	
	are remunerated taken into account the investment costs (depreciation and remu assets) at a given rate.		
Φ	Taxes (%)		Canca, Arcos, Núñez
u v	Maintenance extra cost of installed turbines per year, percentage over investme		Calica, Arcos, Nullez
- F*			
DIACKOULTISK	miligation by using distributed gas turbine generation. An application		Segovia 2017

THE PROBLEM: Model parameters

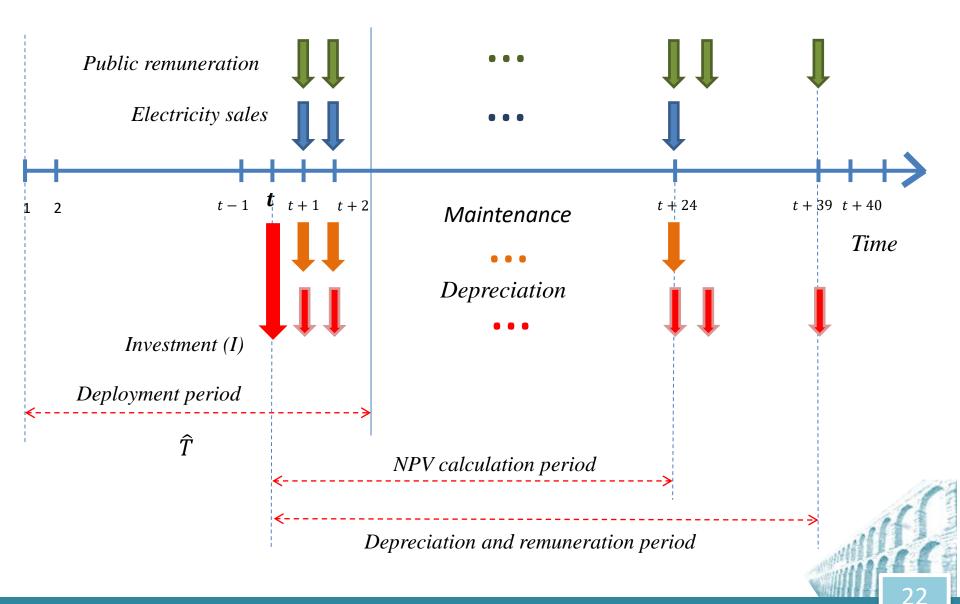
Variables

\widehat{T}	Number of periods (years) needed to complete the installation of power turbines).	Sets	
\overline{T}	Number of periods needed to amortize investments (usually 40 years).	S	(1 if the turbine model $i \in N$ is installed in year $t \in T$
Т	Total planning horizon, $T = \{1, 2,, \hat{T} + \overline{T}\}.$	x_{ij}	$jt = $ to solve the power at risk of location $j \in D$,
Ϋ́	Number of years employed to compute investment analysis (usually 25 years).		(0 otherwise,
N	Set of power solutions (gas turbine models) with nominal power up to $\{1, 2, \dots, NT\}$.		$i \in N, j \in D, t \in \widehat{T}.$
C_i	Cost of turbine model $\in N[\epsilon]$.		(1 if the installed newer at point of right i
P_i	Power of turbin $\in N[MW]$.		(1 if the installed power at point of risk j
E_i	Efficiency of $i \in N$ [%].	τ_j	$= \begin{cases} is greater than PD_j (PD_j \le PD^{max}), \end{cases}$
D	Set of points at lectrical distribution network, $D = \{1, 2,, ND\}$.	ata	(0 otherwise,
PD _j	Electric power at $j \in D[MW]$.	õ	$j \in D$.
CS_j	Total estimated cos power at risk on location $j \in D$. Represents the distribution of		
	the deficiency <i>j</i> by direct intervention on the distribution r		
G	conventional methods Price of gas $[\notin/kWh]$		
MC_i	Marginal cost of turb. N obtained from the price of gas and the turb	•	
MCi	$MC_i = G/E_i$ $i \in N$.		
CM _i	Cumulative margin of turbine model $i \in N \left[\frac{\epsilon}{kW} \right]$.	S	In Spain, power installations bigger
414	- , -	Initial calculations	
AM_i	Average margin of turbine model $i \in N [\in/kWh]$.	at	than 50 MW require environmental studies
TM_i	Total annual margin of turbine model $i \in N$ [\notin /year].	E	and a set of bureaucratic measures that
H_i	Number of hours per year of use of turbine model $i \in N$ attending historical movided by the power monotone sums $[h]$ (second	ğ	,in practice, do impossible the use of
ô	provided by the power monotone curve $[h/year]$. Forecast price of electricity per hour in the monotone curve of prices for	0	distributed generation as a realistic alternative.
\widehat{P}_k	[1,2,, K][\in/kWh].	ia.	C C
CH_k	Cumulative number of hours at price $\langle = P_k$ in the cumulative curve of electric	ī	
GIIK	$\{1,2,\ldots,K\}$ [h/year].	-	
α	Parameter of remuneration. Represents a % of the cost of solving each pow	1	
	location. It can be viewed as an incentive to the Distributed Operation Cor		
	installation of turbines close to the risk point instead of installing in a more prof	S	100
r	Discount rate.	te l	
β	Additional charge due to engineering analysis, turbine installation and loyal per	Ĕ	
РОМ	Percentage of the network maintenance costs	สั	
MT_{it}	Maximum number of turbines of model i supplied in year t by the manufacture	Parameters	
ρ	Regulated rate of remuneration. Accordingly to the Spanish regulation, distribut	1 th	
	are remunerated taken into account the investment costs (depreciation and remu		
۰.	assets) at a given rate.		<u> </u>
Ψ	Taxes (%) Maintenance extra cost of installed turbines per year, percentage over investme		Canca, Arcos, Núñez
μ	manice and cost of instance turbines per year, percentage over investine		
DIACKOULTISK	initigation by using distributed gas turbine generation. An application		Segovia 2017


Initial calculations for turbine model *i* Number of profotible hours per year for turbine model i.. $H_i = \sum_{k=2:P_k \ge MC_i}^K (CH_k - CH_{k-1}), \quad \forall i = 1, ..., N.$ [h/y ear] Cumulative margin of turbine model i. $CM_{i} = \sum_{k=2, D_{i} > M} \left(CH_{k} - CH_{k-1} \right) \left(\hat{P}_{k} - MC_{i} \right), \qquad \forall i = 1, \dots, N. \quad \left[\frac{\pounds}{kW} year \right]$ Average margin of turbine $AM_i = \frac{CM_i}{H_i}, \quad \forall i = 1, ..., N. \quad \left[\frac{\epsilon}{kWh} \right]$ model i. **Total margin (expected profit)** due to electricity sales of turbine $TM_i = AM_iH_iP_i = CM_iP_i, \quad \forall i = 1, ..., N. \quad [\pounds/_{vear}]$ model i.

International Workshop on Locational Analysis and Related Problems.

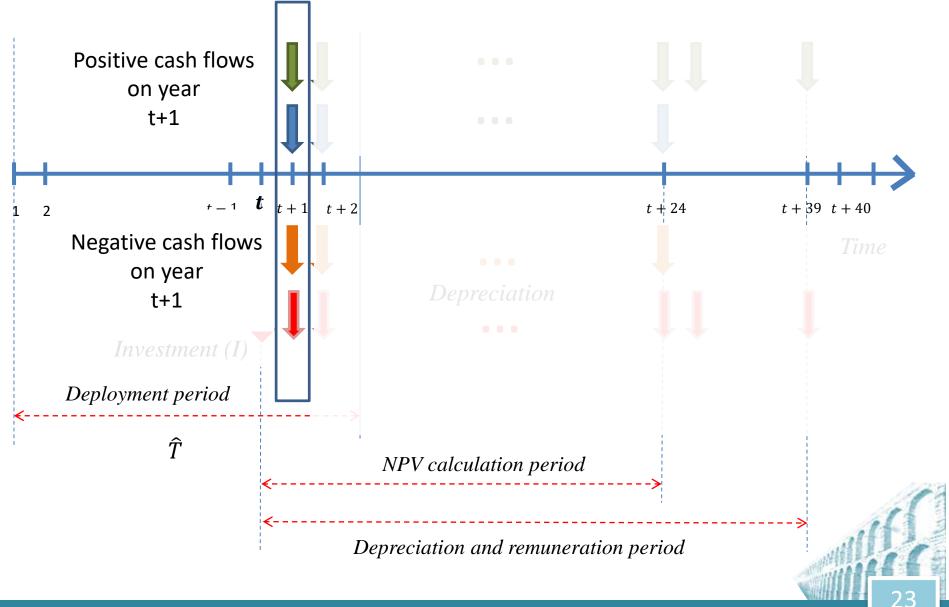
Canca, Arcos, Núñez


Blackout risk mitigation by using distributed gas turbine generation: An application ...

THE PROBLEM: The planning periods

Blackout risk mitigation by using distributed gas turbine generation: An application ...

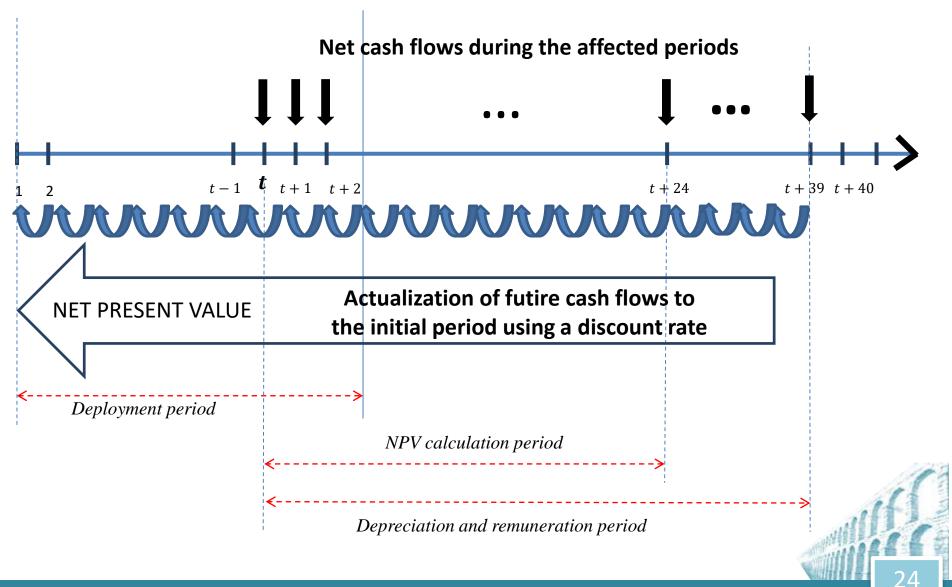
THE PROBLEM: Positive and negative flows



International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...


THE PROBLEM: Model parameters

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

THE PROBLEM: MODEL - Constraints I

 $Max NPV^{T}$

$$\sum_{i=1}^{\hat{T}} \sum_{i \in N} P_i x_{ijt} \le PD^{max}, \qquad \forall j \in D.$$

$$\sum_{t=1}^{\hat{T}} \sum_{i \in N} x_{ijt} \le 1, \qquad \forall j \in D.$$

 $\sum_{j \in D} x_{ijt} \le MT_{it}, \qquad \forall t = 1, \dots, \hat{T}, i \in N.$

Maximization of the total net present value of investments

Environmental constraint. Instalked power less tan 50 Mw.

No more tan one turbine model per location (technical constraint)

Supply limitation (manufacturers' capacity)

International Workshop on Locational Analysis and Related Problems.

Blackout risk mitigation by using distributed gas turbine generation: An application ...

Computing public remueration as a function of α

$$\begin{aligned} RI_{tj} - M_{j} \tau_{j} &\leq \rho \alpha CS_{j} \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \frac{1}{19.5} \sum_{i \in N} \frac{P_{i} x_{ijs}}{PD_{j}} \left(1 - \frac{t-s}{40} \right) \leq RI_{tj} + M_{j} \tau_{j}, \\ \forall j \in D: PD_{j} \leq PD^{max}, t = 1, ..., T, \qquad [\pounds/year] \\ RI_{tj} - M_{j} (1 - \tau_{j}) \leq \rho \alpha CS_{j} \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \frac{1}{19.5} \sum_{i \in N} x_{ijs} \left(1 - \frac{t-s}{40} \right) \leq RI_{tj} + M_{j} (1 - \tau_{j}), \end{aligned}$$

$$\forall j \in D: PD_j \leq PD^{max}, t = 1, ..., T. \quad [!/year]$$

$$\begin{split} MR_{tj} - M_j \tau_j &\leq \frac{\rho \,\alpha \, POM}{40} \, CS_j \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \sum_{i \in N} \frac{P_i \, x_{ijs}}{PD_j} \leq MR_{tj} + M_j \, \tau_j, \\ \forall j \in D: PD_j \leq PD^{max}, t = 1, \dots, T, \qquad [\pounds/year] \\ MR_{tj} - M_j (1 - \tau_j) &\leq \frac{\rho \,\alpha \, POM}{40} \, CS_j \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \sum_{i \in N} x_{ijs} \leq MR_{tj} + M_j (1 - \tau_j), \end{split}$$

$$\forall j \in D: PD_j \le PD^{max}, t = 1, \dots, T. \quad [\stackrel{\textcircled{\bullet}}{=} / year]$$

International Workshop on Locational Analysis and Related Problems.

Public remuneration corresponding to investments. Point at risk j, year t.

> Public remuneration corresponding to maintenance. Point at risk j, year t.

Segovia 2017

Canca, Arcos, Núñez

THE PROBLEM: MODEL - Constraints III

$$\begin{aligned} AR_{tj} - M_{j} \tau_{j} &\leq \frac{\rho \alpha}{40} CS_{j} \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \sum_{i \in \mathbb{N}} \frac{P_{i} x_{ijs}}{PD_{j}} \leq AR_{tj} + M_{j} \tau_{j}, \\ &\forall j \in D: PD_{j} \leq PD^{max}, t = 1, \dots, T, \qquad [^{\textcircled{e}}/year] \end{aligned}$$

$$\begin{aligned} AR_{tj} - M_{j} (1 - \tau_{j}) &\leq \frac{\rho \alpha}{40} CS_{j} \sum_{s=\max(1,t-40)}^{\min(t,\hat{T})} \sum_{i \in \mathbb{N}} x_{ijs} \leq AR_{tj} + M_{j} (1 - \tau_{j}), \\ &\forall j \in D: PD_{j} \leq PD^{max}, t = 1, \dots, T. \qquad [^{\textcircled{e}}/year] \end{aligned}$$

Public remuneration corresponding to depreciation. Point at risk j, year t.

Relationships between location/selection variables and installed power variables

$$-PD^{max}(1-\tau_j) \leq \sum_{i \in \mathbb{N}} \sum_{t \in \widehat{T}} P_i x_{ijt} - PD_j \leq PD^{max}\tau_j,$$

 $\forall j \in D: PD_j \leq PD^{max}$,

International Workshop on Locational Analysis and Related Problems.

Segovia 2017

THE PROBLEM: MODEL - Constraints VI

Computing negative flows

$$I_i = C_i(1 + \beta), \qquad \forall i = 1, \dots, N. \ [\epsilon]$$

$$I_{jt} = \sum_{i \in N} C_i (1 + \beta) x_{ijt} = \sum_{i \in N} I_i x_{ijt}, \quad \forall j \in D, t = 1, \dots, \hat{T}. \quad [\pounds/y \, ear]$$

 $OM_{jt} = \sum_{s=\max(t-24,0)}^{t} I_{js} \cdot \mu, \qquad \forall j \in D, t = 1, \dots, \acute{T}. \ [\notin/y ear]$

 $A_{jt} = \sum_{s=\max(t-39,0)}^{t} \frac{I_{js}}{40}, \quad \forall j \in D, t = 1, ..., T. \ [\notin/y \ ear]$

Investments per year. Point at risk j, year t.

Maintenance of equipments (turbines). Point at risk j, year t.

Depreciation of investments (turbines). Point at risk j, year t.

Canca, Arcos, Núñez

Segovia 2017

International Workshop on Locational Analysis and Related Problems.

THE PROBLEM: MODEL - Constraints V

Computing profit before taxes and cash flows

$$BAIT_{jt} = RI_{tj} + AR_{tj} + MR_{tj} + \sum_{i \in N} x_{ijt} TM_i - (A_{jt} + 0M_{jt} + I_{jt}), \\ \forall j \in D, t \leq \hat{T}$$
Profit before taxes.
Point at risk j, year t.
$$BAIT_{jt} = AR_{tj}, \qquad \forall j \in D, \hat{T} < t \leq \hat{T} + \overline{T}. \quad [\notin/y \ ear]$$

$$CF_{jt} = BAIT_{jt}(1 - \phi) + A_{jt}, \qquad \forall j \in D, t = 1 \dots \overline{T}. \quad [\notin/y \ ear]$$

$$NPV_j(x_{ijt}) = \sum_{t=1}^{T} \frac{CF_{jt}}{(1 + r)^t}, \qquad \forall j \in D. \quad [\notin]$$

$$NPV_j(x_{ijt}) = \sum_{t=1}^{T} \frac{CF_{jt}}{(1 + r)^t}, \qquad \forall j \in D. \quad [\notin]$$

$$Iotal net present value, summation over all points at risk j$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$Iotal net present value, summation over all points at risk 0 = 0 = 0$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

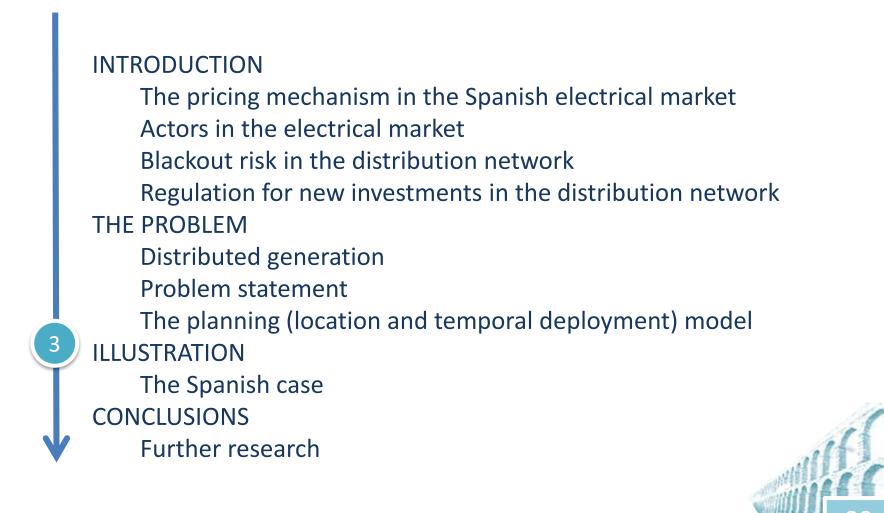
$$Iotal net present value, summation over all points at risk 0 = 0$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$Iotal net present value, summation over all points at risk 0 = 0$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$Iotal net present value, summation over all points at risk 0 = 0$$


$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$Iotal net present value, summation over all points at risk 0 = 0$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [\notin]$$

$$MPV^T = \sum_{j \in D} NPV_j. \quad [MV]$$

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

ILLUSTRATION: Turbine Models

Information about gas turbines characteristics has been taken from the Gas Turbine World Handbook 2014-15 (2015), where there is full information of gas turbines and combined cycles from different manufacturers. Next table represents the scatter plots of the attributes 'cost per kW' and 'efficiency' versus the 'turbine power' for the turbine models currently in the market. Due to environmental constraints, only turbines with nominal power less than 50 MW are considered.

Number	Model	€/kW	Efficiency	ISO Base Rating (kW)	N u mb er	Model	€/kW	Efficiency	ISO Base Rating (kW)
1	C200	1,100	33.1%	200	21	LM2500PJ	558	35.4%	22,417
2	M1A-170	912	26.8%	1,700	22	SGT-600	470	33.6%	24,480
3	OP16-3B	885	26.9%	1,910	23	LM2500PE	504	35.1%	24,820
4	Centaur 40	853	27.9%	3,515	24	1X FT8 SP25 OLN	511	38.1%	25,455
5	501-KB5	834	29.0%	3,897	25	RB211-GT62 OLE	389	37.5%	29,845
6	Centaur 50	809	29.3%	4,600	26	1 x FT8 SP30	401	36.8%	30,850
7	501-KB7S	801	31.5%	5,245	27	MS5002E	405	35.0%	31,100
8	SGT-100	787	31.0%	5,400	28	LM2500+ PK	432	36.9%	31,841
9	Taurus 60	769	31.5%	5,670	29	LM2500+ PR	468	38.8%	31,873
10	Taurus 65	722	32.9%	6,300	30	RB211-GT61 DLE	387	39.3%	32,130
11	SGT-300	623	30.6%	7,901	31	SGT-700	366	37.2%	32,820
12	Taurus 70	642	34.3%	7,965	32	PGT25+G4	401	40.0%	33,057
13	GE10-1	533	31.4%	11,250	33	LM2500+ G4 RD	435	39.2%	34,540
14	Mars 100	581	32.9%	11,350	34	SGT-750	392	39.5%	37,031
15	GTU-12PG-2	528	32.6%	12,300	35	H-25(35)	363	35.0%	37,690
16	SGT-400	524	35.4%	14,326	36	LM6000PF	449	41.7%	43,069
17	Titan 130	552	35.2%	15,000	37	6B.03	403	33.5%	44,000
18	LM1800e -High	555	34.8%	17,768	38	LM6000PF Sprint	414	42.0%	48,675
19	SGT-500	525	33.7%	19,064	39	SGT-800	356	38.3%	50,500
20	Titan 250	529	38.9%	21,745	40	LM6000PG	396	41.9%	51,204
					41	2xFT8 SP50 DLN	435	38.3%	51,235
					42	LM6000PH	425	41.9%	51,438

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

ILLUSTRATION: Points at risk

Information about network risk in Spain has been provided by a Spanish DSO; this network represents a significant portion (close to 50 %) of the total points at risk in the Spanish network. In total, 80 critical points have been characterized. For each point (see Table 2), the power at risk, the investment needed to eliminate that risk (by expanding the network or installing new transformers) and the type of risk (Transformer or line problem) are shown.

Number	Power at risk (MW)	Investment (€)	Number	Power at risk (MW)	Investment (€)	Number	Power at risk (MW)	Investment (€)
	Type Line			Type Line			Type Transfo	ormer
1	10.5	40,000	30	10.2	1,547,522	52	14.7	155,000
2	41.3	320,217	31	18.9	3,060,716	53	22.3	501,517
3	42	360,862	32	71.8	11,681,945	54	16.6	574,904
4	211.7	2,934,635	33	37.9	6,314,980	55	46.0	2,052,583
5	158.9	2,258,064	34	14.8	2,555,310	56	5.3	276,969
6	102.7	1,782,144	35	15.3	2,750,564	57	5.2	327,774
7	117.8	2,349,005	36	27.2	5,190,109	58	12.5	796,195
8	142.4	3,120,702	37	15.3	3,000,769	59	14.7	941,260
9	25.1	625,636	38	19.5	3,919,657	60	8.8	735,281
10	38.5	999,090	39	16.1	3,549,418	61	7.7	705,169
11	61.8	3,005,016	40	7.4	1,788,735	62	10.3	952,807
12	31.7	1,704,237	41	9.2	2,284,435	63	16.0	1,609,980
13	111.7	6,926,217	42	9.6	2,440,821	64	19.3	1,965,656
14	25.5	1,588,105	43	13	3,879,367	65	8.9	941,260
15	44.9	2,828,500	44	16.9	5,146,912	66	5.2	601,635
16	21.6	1,574,073	45	15.6	4,976,243	67	7.1	834,426
17	56.4	4,116,055	46	10.95	3,619,076	68	5.9	737,806
18	74.1	5,432,785	47	6.6	2,565,240	69	7.1	884,232
19	23.1	1,918,080	48	7.2	3,066,607	70	6.6	982,596
20	31.3	2,637,000	49	11.5	5,049,054	71	5.6	945,876
21	32.2	3,045,631	50	8	4,100,915	72	6.7	1,228,754
22	32.9	3,510,061	51	6.3	4,923,524	73	5.2	964,698
23	11.52	1,239,960				74	5.1	955,179
24	15	1,983,187				75	8.7	1,758,259
25	56.8	7,645,862				76	17.0	4,613,795
26	16	2,225,390				77	7.2	2,247,561
27	20.6	2,872,298				78	8.9	2,910,499
W 28	24.5	3,435,860		nd Polat	ed Problems	79	11.4	5,859,722
29	14.2	2,049,677	/515 d	nu kelal	eu Problems	80	6.4	7,114,958

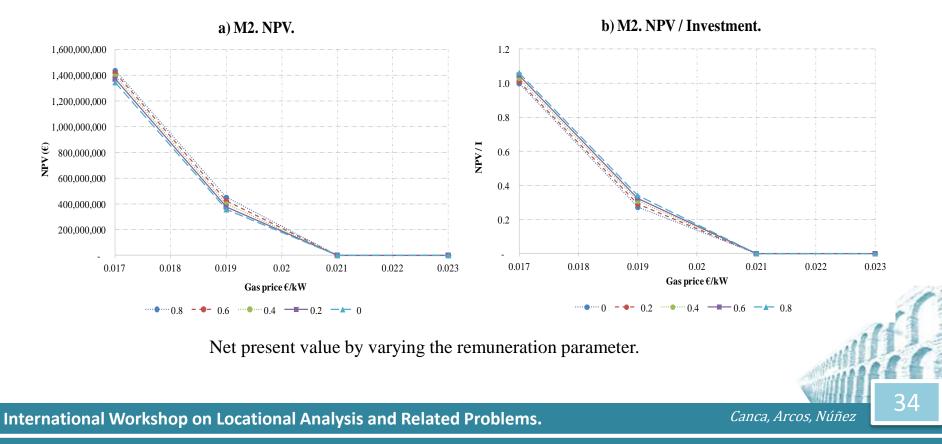
Blackout risk mitigation by using distributed gas turbine generation: An application ...

The model which gives a complete freedom to DG's in the selection of the most convenient locations for installing turbines, as well as in the choice of the most appropriate turbine models. For this scenario, the model contains **64,730 constraints** and **66,642** variables, **33,669** of them, binary. The model has been coded in GAMS (GAMS v24.3) and solved with CPLEX v12.5 (1200 secs, Intel i7, 2.6 GHz, 8GB RAM).

Exp. No. 1. (No supply limits) Testing coherence

The constraint corresponding to the maximum number of supplied turbines by year is relaxed by fixing this limit to the number of risk points (80). As expected, in this case, if the gas price is lower than $0.020 \notin kWh$, i.e. (for the cases G=0.017 and G=0.019), and considering a remuneration parameter $\alpha \ge 0.4$ (cases with $\alpha = 0.4$, $\alpha = 0.6$, $\alpha = 0.8$) the DG install the turbine model 40 at all the risk points. Note that turbine model 40 has a nominal power of 51204 kW and an efficiency of 41.09%. Although the power of models 41 and 42 is higher, the model 41 has a lower efficiency and it is more expensive whereas the model 42 has the same efficiency but is also more expensive. In comparison with the turbine model 42, the extra remuneration obtaining for installing a bit more power do not compensate the

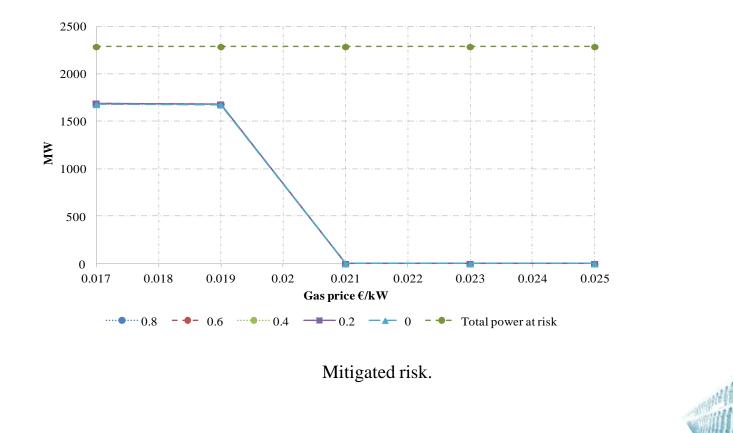
cost of the turbine


International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

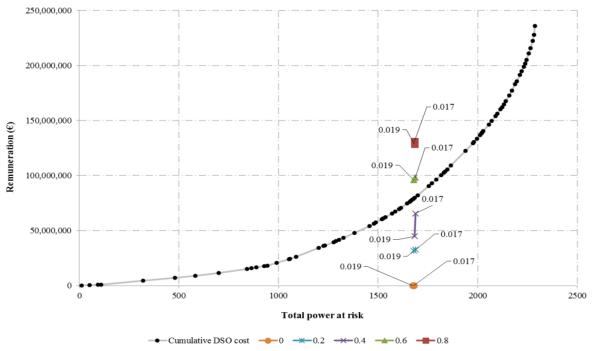
Exp. No. 2. (Supply limit of 5 turbines per year – all models)


The previous experiment is repeated by varying the price of gas for different values of the remuneration parameter α , in this occasion from 0 to 80% by incrementing in 20% each time and considering a maximum supply of 5 turbines/year for each model.

Blackout risk mitigation by using distributed gas turbine generation: An application ...

ILLUSTRATION: Risk mitigation. Exp. No. 2

Total power at risk mitigated for different scenarios by varying the price of gas and the remuneration parameter. For all the values of α , the residual power at risk is the initial one if the price of gas exceeds 0.021 €/kW, i.e. DG's will decide to not enter in the market. As shown, a variation in the parameter


International Workshop on Locational Analysis and Related Problems.

Segovia 2017

Canca, Arcos, Núñez

ILLUSTRATION: Comparison with conventional procedures cost to mitigate risk

A comparison between solving strategies cost (conventional methods versus gas turbine DG model M2) is presented for different values of the remuneration parameter α , concretely, 0.0, 0.4, 0.6 and 0.8. As illustrated, remuneration values of 0.8 and 0.6 outperform the solving cost by conventional methods represented by the "Cumulative DSO Cost" (i.e. DG's will select power at risk points with the highest risk in order to obtain a good remuneration, those where the cost of solving each MW are higher for traditional methods). A value of $\alpha = 0.4$ (and also values of 0.2 and no remuneration) give rise to lower cost than using conventional methods. In case of no remuneration DG's enter the market whenever the price of gas is lower than 0.019 €\kW removing practically the same risk as in the rest of cases

Comparison of solving costs (conventional methods vs. gas turbine DG).

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

ILLUSTRATION: Example of detailed solution

				0.	.8									0.	.4				
				G=0	.019									G=0	.019				
RP		М	PaR	Ins	RP	Y	Μ	PaR	Ins	RP	Y	Μ	PaR	Ins	RP	Y	Μ	PaR	Ins
1	7	40	10.5	51.2	41	3	38	9.2	48.7	1	7	40	10.5	51.2	41	3	38	9.2	48.7
2		40	41.3	51.2	42	3	40	9.6	51.2	2	7	40	41.3	51.2	43	1	40	13	51.2
3	6	40	42	51.2	43	1	40	13	51.2	3	6	40	42	51.2	44	1	40	16.9	51.2
4	3	_10	212	51.2	44	1	40	16.9	51.2	4	6	40	212	51.2	45	1	42	15.6	51.4
5	5	40	159	51.2	45	1	38	15.6	48.7	5	5	40	159	51.2	46	2	40	11	51.2
6	4	42	103	51.4	46	2	38	11	48.7	6	4	42	103	51.4	47	3	38	6.6	48.7
7	4	42	118		47	2	38	6.6		7	4	42	118	51.4	48	2	38	7.2	48.7
8	4	42	142	51.4	48	2	40	7.2	51.2	8	4	42	142	51.4	49	1	38	11.5	48.7
9	6	40	25.1	51.2	49	1	40	11.5	51.2	9	5	38	25.1	48.7	50	1	40	8	51.2
10	4	40	38.5		50	2	38	8	48.7	10	4	40	38.5	51.2	51	1	40	6.3	51.2
11	3	42	61.8		51	1	38	6.3	48.7	11	3	42	61.8	51.4	52	7	40	14.7	51.2
12	3	38	31.7		52	7	40	14.7	51.2	12	3	40	31.7	51.2	53	6	40	22.3	51.2
13	2	42	112	51.4	53	6	40	22.3	51.2	13	2	42	112	51.4	54	6	40	16.6	51.2
14	3	42	25.5		54	6	40	16.6		14	4	42	25.5		55	3	42	46	51.4
15	1	36		43.1	55	1	36	46		15	2	42	44.9	51.4	56	7	40	5.27	51.2
16	4	42	21.6	51.4	56	7	40	5.27	51.2	16	4	40	21.6	51.2	57	7	40	5.23	51.2
17	1	42	56.4		57	7	40	5.23	51.2	17	2	42	56.4		58	5	- 38	12.6	48.7
18	1	42	74.1	51.4	58	5	38	12.6	48.7	18	1	42	74.1	51.4	59	4	- 40	14.7	51.2
19	3	40	23.1	51.2	59	4	40	14.7	51.2	19	3	42	23.1	51.4	60	5	- 38	8.77	48.7
20	2	42	31.3		60	5	38	8.77	48.7	20	2	40	31.3	51.2	61	5	40	7.72	51.2
21	2	42	32.2	51.4	61	5	38	7.72	48.7	21	2	38	32.2	48.7	62	4	40	10.3	51.2
22	2	38	32.9		62	4	38	10.3	48.7	22	2	40	32.9	51.2	63	3	42	16	51.4
23	4	40	11.5		63	3	42	16		23	4	40	11.5	51.2	64	3	40	19.3	51.2
24	3	40	15		64	3	38	19.3	48.7	24	3	40	15	51.2	65	5	40	8.89	51.2
25	1	42	56.8		65	4	38	8.89		25	1	42	56.8	51.4	66	6	40	5.17	51.2
26	3	42	16		66	6	40	5.17	51.2	26	3	42	16	51.4	67	5	40	7.08	51.2
27	2	40			67	5	40	7.08		27	2	42	20.6		68	5	38		48.7
28	2	42		51.4	68	5	40	5.91	51.2	28	2	38	24.5	48.7	69	5	40	7.07	51.2
29	3	42	14.2	51.4	69	5	40	7.07	51.2	29	3	40	14.2	51.2	70	4	38	6.62	48.7
30	4	40	10.2	51.2	70	4	42	6.62	51.4	30	4	42	10.2	51.4	71	4	38	5.56	48.7
31	2	40	18.9	51.2	71	4	38	5.56		31	2	40	18.9	51.2	72	4	38	6.7	48.7
32	1	42	71.8	51.4	72	4	40	6.7	51.2	32	1	42	71.8	51.4	73	4	38	5.17	48.7
33	1	42	37.9	51.4	73	4	38	5.17	48.7	33	1	42	37.9	51.4	74	4	38	5.08	48.7
34	3	38	14.8		74	4	38	5.08		34	3	38	14.8	48.7	75	3	40		51.2
35	2	38	15.3	48.7	75	3	40	8.72	51.2	35	2	42	15.3	51.4	76	1	38	17	48.7
36	1	40	27.2	51.2	76	1	40	17	51.2	36	1	40	27.2	51.2	77	3	38	7.16	48.7
37	2	40	15.3	51.2	77	3	40	7.16	51.2	37	2	38	15.3	48.7	78	2	38	8.93	48.7
38	1	38	19.5	48.7	78	2	40	8.93	51.2	38	1	38	19.5	48.7	79	1	38	11.4	48.7
39	2	42	16.1	51.4	79	1	38	11.4	48.7	39	2	40	16.1	51.2	80	1	38	6.38	48.7
40	3	38	7.4	48.7	80	1	38	6.38	48.7	40	3	38	7.4	48.7					

We include detailed solutions for two of the studies cases, corresponding to $\alpha = 0.8$ and 0.4 for G=0.019 €/kW. Column 'RP' represents the Risk Point number, 'Y' denotes the year of installation and column 'M' the turbine model, 'PAR' corresponds to the power at risk and column 'Ins' is the installed power.

Regarding the results, as might be expected, the risk mitigated increases as the network contribution increases (higher values of α), although the investment effort is not proportional to the risk eliminated. It is also interesting that all the selected turbines (36, 38, 40 and 42) correspond to different variations of the same model of LM600 turbine of General Electric, an aereoderivative gas turbine of high performance and latest technology.

Summary

	-			4
		0.4	0.8	
Powert at Risk (M	W)	1,678	1,683	
Network Contrinut	tion '000 €	75,980	150,888	
Number	of Turbines	79	80	
	Model 42	20	20	
	Model 40	35	35	
	Model 38	24	23	
	Model 36	-	2	
Totally mitigated r	isk points	66	67	
Partially mitigated	risk points	13	13	2

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

a

Blackout risk mitigation by using distributed gas turbine generation: An application ...

INTRODUCTION The pricing mechanism in the Spanish electrical market Actors in the electrical market Blackout risk in the distribution network Regulation for new investments in the distribution network THE PROBLEM **Distributed generation Problem statement** The planning (location and temporal deployment) model **ILLUSTRATION** The Spanish case **CONCLUSIONS** Further research

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

In order to analyze the possible strategies derived from the use of gas turbine distributed generation, two different mixed integer programming optimization planning models have been developed. The first one (M1) (Not illustrated in this presentation) mainly represents the interest of DSO and can be viewed as a "global risk solving" model.

A second model, **showed in this presentation**, M2, leaves full freedom to DG's to choose where install a source of generation on the locations proposed by the distributor and, in this case, what type of turbine, attending its own interests. This model mainly represents the interest of DG's and can be viewed as a "business opportunity" model.

Both models provide the temporal installation plan of turbines along certain planning horizon, maximizing also the net present value under turbine supply limits.

In both cases, DG's could be encouraged by DSO to install the appropriate generation power precisely at the points at risk in the network, using a regulated remuneration that incentives the selection of these points. This remuneration could cover potential losses due to the gas price variability, aiming to DG's to cover, at least partially, several points at risk even when the total expected cumulative margin at these points is negative.

International Workshop on Locational Analysis and Related Problems.

Canca, Arcos, Núñez

Blackout risk mitigation by using distributed gas turbine generation: An application ...

Although the proposed methodology is general, in order to illustrate its applicability, a distribution network containing a significant portion (close to 50 %) of the total points at risk in the Spanish network has been used as testing scenario. Different experiments are carried by varying the gas price and the remuneration factor.

We can conclude that, in order to diminish the total power at risk, it makes no sense that DSO contributes to the installation of the turbines, **but it is extremely important that the gas price remains low**. A remuneration lower than 50% can contribute to cover partially this issue (the gas price variability).

The contribution of the System Regulator could be to provide contracts for gas price coverage for those generators that install turbines at the points proposed by the DSO. To do this, it will be necessary to develop a sufficiently broad gas future market.

International Workshop on Locational Analysis and Related Problems.

Blackout risk mitigation by using distributed gas turbine generation: An application ...

Exploring the possibility of applying the same model type but **using storage** cells (batteries) **to be charged at valley hours** (lower costs) and **shelling energy at peak hours** (bigger margin).

Modify the model to analyse the impact of the **temporal decommissioning of nuclear power plants in Spain** and its replacement by different generation technologies.

International Workshop on Locational Analysis and Related Problems.

Blackout risk mitigation by using distributed gas turbine generation: An application ...

Thank you for your attention!.

International Workshop on Locational Analysis and Related Problems Segovia, September 27-29, 2016