

VIII International Workshop on Locational Analysis and Related Problems

Segovia, Spain, 27th – 29th September 2017

Territorial districting models for the reorganization of postal services G. Bruno, M. Cavola, <u>A. Diglio</u>, C. Piccolo

SHI DIE

- The context of the postal sector
- * Problem description
- * Mail Collection Problem: mathematical model and application
- * Mail Delivery Problem: possible strategies and first steps
- * Conclusions and further research

E-substitution: Reduction of postal volumes

source: BCG (2012), Focus on the future. Building a new compelling position for posts.

Effects of E-substitution

source: Main Development in the Postal Sector (WIK Consult, 2013)

Revenues (in billions of euros) – EU 28

Effects of E-commerce

Volumes of parcels per inhabitant

Source: Main Development in the Postal Sector (WIK Consult, 2013)

Source: Europe's CEP market: growth on new terms (ATKearney, 2012)

- Reorganization of the mail collection system through the reduction of the number of postal boxes
- Simulation and comparison of mail delivery strategies

Low volumes. High number of postal boxes. High inefficiency.

Location

- Allocation
- ✤ Districting

Hierarchical Facility Location Problems

- Cinar, Y., & Yaman, H. (2011). The vendor location problem. *Computers & Operations Research, 38*(12), 1678-1695.
- Farahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. *Computers & Industrial Engineering*, 68, 104-117.
- Şahin, G., & Süral, H. (2007). A review of hierarchical facility location models. Computers & Operations Research, 34(8), 2310-2331.
- Serra, D., & ReVelle, C. (1992). The PQ-Median problem: Location and districting of hierarchical facilities. Part II: Heuristic solution methods.
- Serra, D. (1996). The coherent covering location problem. *Papers in Regional Science*, 75(1), 79-101.

Districting Problems

- Bruno, G., Genovese, A., & Piccolo, C. (2017). Territorial amalgamation decisions in local government: Models and a case study from Italy. Socio-Economic Planning Sciences, 57, 61-72.
- De Assis, L. S., Franca, P. M., & Usberti, F. L. (2014). A redistricting problem applied to meter reading in power distribution networks. *Computers & Operations Research*, 41, 65-75.
- Kalcsics, J., Nickel, S., & Schröder, M. (2005). Towards a unified territorial design approach—Applications, algorithms and GIS integration. *Top*, *13*(1), 1-56.

Notation

- *I* set of users, indexed by *i*, identified with the centroids of the census sections;
 - set of current locations of postal boxes, indexed by *j*;
- $J' \subset J$ set of current locations of postal boxes located at a postal office, indexed by j;

|I| = 2332; |J| = 272

- d_{ij} distance from user *i* to postal box *j*;
- $d_{jj'}$ distance from postal box j to postal box j';

Decision variables

- y_j binary variable equal to 1 if a postal box is located at j, 0 otherwise;
- x_{ij} binary variable equal to 1 if user *i* is allocated to postal box *j*, 0 otherwise;
- $z_{jj'}$ binary variable equale to 1 if postal box j is allocated to postal box j', 0 otherwise.

Mathematical modelling: accessibility measures

 d_i^{min} cumulative distribution function $d_i^{min} = min_{i \in I} \{d_{ij}\} \forall i \in I$

 I_{α}

set of users located within d_{α} distance from the closest postal box ($i \in I: d_i^{min} < d_{\alpha}$);

 $I_{(1-\alpha)} \qquad \text{set of users NOT located within } d_{\alpha} \text{ distance from the} \\ \text{closest postal box } (i \in I: d_i^{min} \ge d_{\alpha})$

$z = \sum_{j,j' \in J} d_{jj'} z_{jj'}$	Min!	(1)	
s.t.			
$\sum_{j \in J} x_{ij} = 1$	$\forall i \in I$	(2)	
$x_{ij} \le y_j$	$\forall i \in I, \forall j \in J$	(3)	
$\sum_{j \in J} d_{ij} * x_{ij} \le d_i^{min}$	$\forall \ i \in I_{(1-\alpha)}$	(4) -	Location/Allocation
$\sum_{k \in J_i} d_{ik} * x_{ik} + (M - d_{ij}) * y_j \le M$	$\forall i \in I_{\alpha}, \forall j \in J_i$	(5)	
$y_j = 1$	$\forall j \in J'$	(6)	
$\sum_{j'\in J} z_{jj'} = y_j$	$\forall j \in J$	(7)	
$z_{jj'} \leq z_{j'j'}$	$\forall \ j,j' \in J$	(8) -	Districting
$\sum_{j \in J} z_{jj} = k$		(9)	
$x_{ij} \in \{0,1\}$	$\forall i \in I, \forall j \in J$	(10)	
$y_j, z_{jj\prime} \in \{0,1\}$	$\forall \ j,j' \in J$	(11)	

Computational experiments: an example of solution

REDLOC

In 168 out of 2333 cases (7%), users should patronize a different facility

Accessibility considerations

Ji

 J'_i

Accessibility considerations

set of facilities located within distance d_{α} from the centroid of polygon i $(j \in J: d_{ij} \leq d_{\alpha} \forall i \in I)$

 $|J_i'|$

set of facilities located within distance d_{α} from the farthest vertex of polygon i $(j \in J: d_{ij}^{max} \leq d_{\alpha} \forall i \in I)$

 $|J_i'| \le |J_i| \ \forall \ i \in I$

Logistic system of a postal service provider

REDLOG

Notation

 P_{j}

 l_j

- *I* set of recipients identified with house numbers
 - set of streets where house numbers are located

|I| = 40953; |J| = 1756

- p_i population located at house number i
 - population located at street j
 - lenght of street j

- probability that users located at *i* receive ordinary mail
- probability that users located at i receive priority mail

 $\boldsymbol{\alpha}_i$

 $\boldsymbol{\beta}_i$

Types of products delivered:

- Ordinary Mail
- Priority Mail
- Registered mail
- Legal proceedings
- Insured mail
- Massive mail (only for businesses)
- National/International parcels

Biweekly delivery model on alternate days

Quality objectives: J+1 (Priority

Priority Mail on a daily basis Ordinary Mail on alternate days

	MON	TUE	WED	тни	FRY
1	0 _A	O_B	<i>O</i> _A	O_B	0 _A
2	P_{I}	P_{I}	P ₁	P ₁	PI

Ordinary mail districting

Priority mail districting

Delivery strategy – Scenario 2

	MON	TUE	WED	THU	FRY
1	$(0/P)_A + P_B$	$P_A + (0/P)_B$	$(0/P)_A + P_B$	$P_A + (0/P)_B$	$(0/P)_A + P_B$

Priority and Ordinary Mail

	MON	TUE	WED	THU	FRY
«Non Plus» Postman	$(0/P)_A$	$(0/P)_{B}$	$(0/P)_{A}$	$(0/P)_{B}$	$(0/P)_{A}$
«Plus» Postman	P_B	P _A	P_B	P_A	P_B

	MON	TUE	WED	тни	FRY
Baricentric Zone	O/P	O/P	O/P	O/P	O/P
Non Baricentric Zone	Scenario 1 o 2 o 3				

Mail delivery strategies: a comparison

Strategies	Approach (Ordinary vs. Priority Districting)	Operators vs. Type of Mail	Competence Area	Driver
1	Separate (Single level districting)	Dedicated	Ordinary: 1 District (A+B)	Ordinary Mail Volumes in zone A [B]
	(Prioriry: 1 District	Priority Mail Volumes per district
2	Integrate (Multi level distrcting)	Not dedicated	1 District (A+B)	Ordinary and Priority Mail Volumes in A [B] + Priority Mail Volumes B [A]
3	Integrate	Non Plus: Not dedicated	Non Plus: 1 District (A+B)	Ordinary and Priority in A [B]
	(Multi level districting)	Plus: Dedicated	Plus: 1 District (not covered zones)	Priority per district
4	Integrate	Non Baricentric: NA	NA	NA
	(Multi level districting)	Baricetric: Not dedicated	1 District	Priority Mail Volumes

- ***** The problem of reorganizing the collection system of a postal service provider has been addressed;
- ✤ A mathematical model aiming at defining both the postal boxes to be preserved and proper collection areas has been proposed and implemented;
- Some considerations on users' accessibility measures have been highlighted;
- ✤ Some strategies for mail delivery have been showed

Further research

- Enlarge computational experiments and test the developed model on different case studies characterized by different users and facilities' distribution and geographic characteristics;
- ***** Testing the model using taking into account the new accessibility measures defined;
- ***** Developing mathematical models for simulating the different delivery strategies proposed;
- Suilding a real instance for testing and comparing the delivery models to be developed

VIII International Workshop on Locational Analysis and Related Problems

Segovia, Spain, 27th – 29th September 2017

Thanks for your attention! Any questions? Comments?

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE