
THE UNIVERSITY of EDINBURGH School of Mathematics

Symmetry in Multi-period Sales Districting

Jörg Kalcsics Matthias Bender (FZI) Anne Meyer (TU Dortmund Martin Pouls (FZI)

30 January 2019 IWOLOCA 2019, Cadíz

Outline

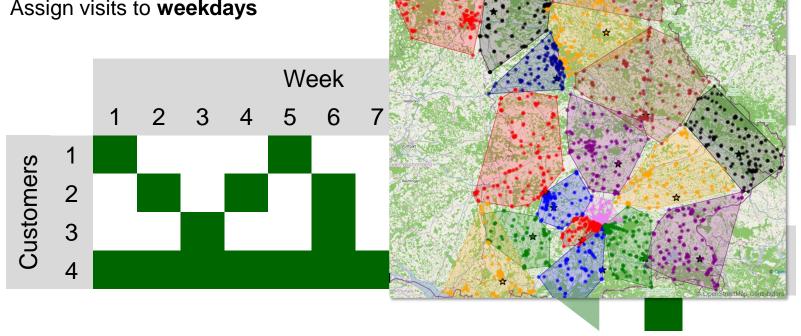
- The Multi-period Sales Districting Problem
- Symmetries in the Visit Scheduling Problem
- Conclusions

The Multi-period Sales Districting Problem

Customers

- Require on-site service by a sales person
- Known average on-site service time
- Have fixed but differing visiting frequencies

Sales persons


Given number and locations

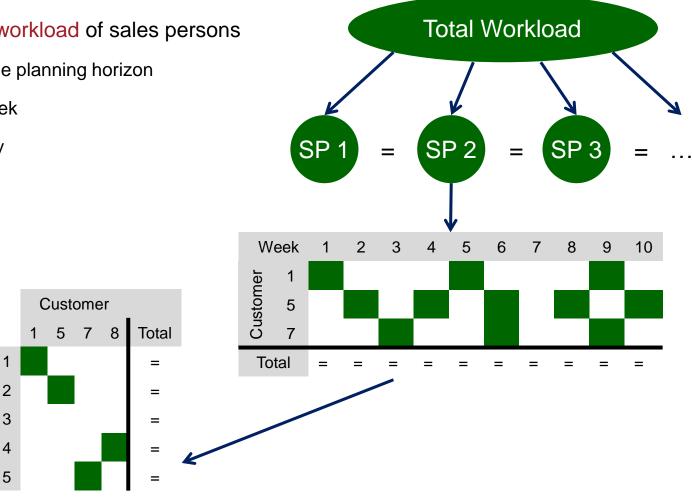
Planning horizon

- 3 12 months
- Typical problems size
 - \geq 10,000 customers & \geq 50 sales persons

Decisions

- Find assignment of customers to sales persons.
- Determine calendar for customers:
 - Assign visits to weeks
 - Assign visits to **weekdays**

The Multi-period Sales Districting Problem

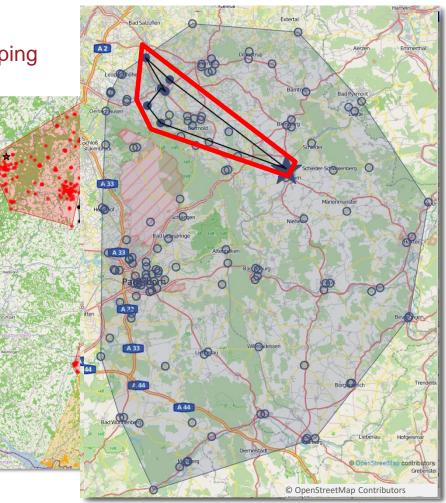


Planning goals

- Balance workload of sales persons
 - Over the planning horizon -
 - Per week

Day

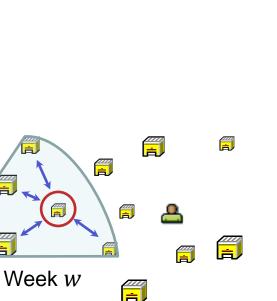
Per day -



The Multi-period Sales Districting Problem

Planning goals (cont'd)

- Determine compact and non-overlapping
 - Overall districts
 - Weekly sub-districts
 - Daily sub-districts



Planning goals (cont'd)

- Determine compact and non-overlapping
 - **Overall** districts
 - Weekly sub-districts
 - Daily sub-districts

Measuring compactness

- Weekly compactness
 - Determine a virtual centre in each week
 - Sum up the distances from all customers in the week to the centre
- Analogously for daily compactness

Ē

÷.

The Multi-period Sales Districting Problem

- Problem can be formulated as a mixed-integer linear program that
 - minimizes the sum of distances while ensuring
 - the district balance and
 - the visiting frequencies

Scheduling of Visits

Assumption

The districts have already been determined

"Remaining" problem: Visit scheduling

Schedule the visits for each sales person

Computational study

- Data sets
 - 5 random instances
 - # Customers: 30
 - CPLEX 12.6, max. runtime: 0.5 hours
 - Visiting frequencies

Туре	Week rhythms	No. weeks	No. weekdays
1	{1,2,4}	4	5
2	{2,4}	4	5
3	{1,2,4,8}	8	5
4	{2,4,8}	8	5
5	{1,2,4,8,16}	16	3
6	{2,4,8,16}	16	3

Results

Туре	Gap	Opt	Time in sec.
1	0.01%	5	291.1
2	3.94%	1	1492
3	5.84%	0	1800
4	17.06%	0	1800
5	11.05%	0	1800
6	12.83%	0	1800

30 customers

Туре	Rhythms	Weeks	Days
1	{1,2,4}	4	5
2	{2,4}	4	5
3	{1,2,4,8}	8	5
4	{2,4,8}	8	5
5	{1,2,4,8,16}	16	3
6	{2,4,8,16}	16	3

Outline

- The Multi-period Sales Districting Problem
- Symmetries in the Visit Scheduling Problem
- Conclusions

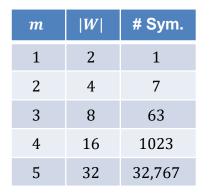
Symmetries in the Visit Scheduling Problem

- The visit scheduling problem is highly symmetric
- Let
 - $b \in B$ Customers
 - $w \in W$ Weeks in the planning horizon
 - $d \in D$ **Days** in the planning horizon
 - r_b Visit frequency or week rhythm of customer $b \in B$
 - B^w Customers visited in week $w \in W$ week cluster
 - \tilde{B}^d Customers visited on **day** $d \in D$
 - *S* A solution, $S = (B^1, ..., B^{|W|})$

day cluster

Symmetry on the level of days

- Given a specific week cluster $B^w = (\tilde{B}^{d_1}, \tilde{B}^{d_2}, \tilde{B}^{d_3}, \tilde{B}^{d_4}, \tilde{B}^{d_5}).$
- Then, any permutation of the five days yields a symmetric solution for that week
- Each week cluster gives rise to 5! 1 = 119 symmetric arrangements of day cluster within a week


Symmetry on the level of weeks

Given a solution

$$S = \left(B^1, B^2, \dots, B^{|W|}\right)$$

Assume

- $r_b = 2^k, k \in \mathbb{N}$
- $|W| = 2^m = \max_{b \in B} r_b$
- Then, every **solution** *S* has $2^{m(m+1)/2} 1$ symmetric solutions with respect to the week cluster
- **Case** m = 1: |W| = 2
 - $S = (B^1, B^2)$ is symmetric to $S = (B^2, B^1)$

- **Case** m = 2: |W| = 4
 - Let $C^w = \{b \in B^w \mid r_b < 4\}$
 - Then $(C^1, C^2) = (C^3, C^4)$ and $(C^1, C^2, C^3, C^4) = (C^1, C^2, C^1, C^2)$
 - (C^1, C^2) is symmetric to (C^2, C^1)

Hence

 $(\mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3, \mathcal{C}^4)$ is symmetric to $(\mathcal{C}^2, \mathcal{C}^1, \mathcal{C}^4, \mathcal{C}^3)$

Thus

 (B^1, B^2, B^3, B^4) is symmetric to (B^2, B^1, B^4, B^3)

• Moreover, any **cyclic permutation** of (B^1, B^2, B^3, B^4) is also symmetric: $(B^2, B^3, B^4, B^1), (B^3, B^4, B^1, B^2)$ and (B^4, B^1, B^2, B^3)

Breaking day symmetries

- Impose an "order" on the days of a week
- Possibilities
 - Sort days by **increasing workload**
 - Sort days by **smallest customer index**
- Will eliminate all symmetric solutions for days!

Breaking week symmetries

- Pick a customer b ∈ B with maximal r_b and fix its visit to the first day of the first week
- Will eliminate the number of symmetric solutions for weeks by a factor of |W| !

Results for ordering days by indices

Add constraints

$$h_b^d \le \sum_{b'=1}^{b-1} h_{b'}^{d-1}$$

30 customers

Туре	Gap	Opt	Time in sec.
1	0.01%	3	1052
2	9.98%	0	1800
3	11.22%	0	1800
4	27.46%	0	1800
5	12.88%	0	1800
6	17.32%	0	1800

Туре	Gap	Opt	Time
1	0.01%	5	291.1
2	3.94%	1	1492
3	5.84%	0	1800
4	17.06%	0	1800
5	11.05%	0	1800
6	12.83%	0	1800

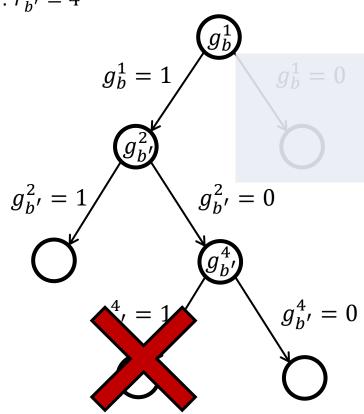
Results for fixing a customer visit

30 customers

Туре	Gap	Opt	Time in sec.
1	0.01%	5	146.4
2	2.29%	3	1198
3	3.73%	0	1800
4	14.70%	0	1800
5	9.00%	0	1800
6	12.39%	0	1800

Туре	Gap	Opt	Time
1	0.01%	5	291.1
2	3.94%	1	1492
3	5.84%	0	1800
4	17.06%	0	1800
5	11.05%	0	1800
6	12.83%	0	1800

Symmetry-Reduced Branching


Add additional variable fixations to eliminate symmetric solutions with respect to weeks when branching on fractional variables in the branch & bound tree.

57	A		#	Solution
***	Assume		1	(B^1, B^2, B^3, B^4)
	• $r_b = 2^k, k \in \mathbb{N}$		2	(B^1, B^4, B^3, B^2)
	• $ W = 2^m = \max_{b \in B} r_b$	g_b^{-1}		
	•	$g_b^1 = 1 $ $g_b^1 = 0$		
***	Let			
	■ <i>m</i> = 2			
	• $b \in B$: $r_b = 4$	_		
	$- b \subset b \cdot r_b - \tau$			

Symmetry-Reduced Branching

Let

• $b' \in B: r_{b'} = 4$

#	Solution
1	(B^1, B^2, B^3, B^4)
2	(B^1, B^4, B^3, B^2)

Computational Results for a Branch-and-Price Algorithm

- 5 real-world data sets provided by PTV Group
- # Weeks in planning horizon: 4
- # Days per week: 5
- Week rhythms: $r_b \in \{1, 2, 4\}$
- Benchmark: Gurobi 7.0.1, 10 hours

	#Customers						
Inst	(#Visits)						
1	31 (80)						
2	26 (74)		37	2		2	7
3	32 (76)						
4	25 (71)	36,000	669,752	36,000	661,801	458	6,181
5	35 (84)						
Avg							

Outline

- The Multi-period Sales Districting Problem
- Symmetries in the Visit Scheduling Problem
- Conclusions

Conclusions

- Wisit scheduling problem is highly symmetric
- Limited success in reducing the number of symmetric solutions a priori
- Some success in reducing the number of symmetric solutions while solving the problem