Model 00000 Exact approach

Computational experience

Conclusions 0000

Exact algorithm for the Reliability Fixed-Charge Location Problem with Capacity constraints

$$\label{eq:main_state} \begin{split} M.Albareda-Sambola^1, M.Landete^2, JF.Monge^2,\\ JL.Sainz-Pardo^2 \end{split}$$

¹Technical University of Catalonia-Barcelona ²Universidad Miguel Hernández de Elche

IX International Workshop on Locational Analysis and Related Problems 2019. Cádiz. January, 2019 Exact approach

Computational experience

Conclusions 0000

Introduction to RFLP and CRFLP

- RFLP
- CRFLP

2 Model

- CRFLP Model
- Expected overload
- Capacity constraints
- 3 Exact approach
 - The key
 - The master problem
 - The slave problems
 - The algorithm
- 4 Computational experience
 - Generated instances
 - Average values
 - Distribution of overload and non-service demand

5 Conclusions

Introduction to RFLP and CRFLP	Model	Exact approach	Computational experience	Conclusions
●○	00000	000000000000		0000
RFLP				

- Introduced by Snyder & Daskin in *Reliability models for facility location: the expected failure cost case. Transportation Science, 39* (2.005).
- Fixed-charge facility location problem.
- Unsplittable demands.
- Facilities can independently fail with homogeneous probability.
- For each customer, a sequence of assignments to opened facilities is defined and, at each scenario, the customer is served from the first facility in the sequence that has not failed.
- An extra dummy non-failing facility with large assignment costs is used to model situations where a customer is lost or outsourced.
- Facilities have unlimited capacity.

Introduction to RFLP and CRFLP	Model	Exact approach	Computational experience	Conclusions
○●	00000	000000000000		0000
CRFLP				

- *CRFLP* was introduced by Albareda-Sambola et al. in Introducing capacities in the location of unreliable facilities. European Journal of Operational Research, 259 (2.017)
- It could have facilities with limited capacity.
- Usually, capacities are considered as strict limits. However, in many situations it is possible to increase the capacity of a facility during emergency situations. In this work different models were explored **allowing to serve a demand slightly over the capacity** of the facilities, but keeping a limit on these excesses.
- **Stability** in the assignment of customers to facilities is compulsory. Then, the orders of the assignments of customers to facilities is predefined and provided by the best solution. The **reassignments are not allowed**.

Introduction to RFLP and CRFLP	Model ●0000	Exact approach 000000000000	Computational experience	Conclusions 0000
Sets and parameter	ers			

<u>Sets</u>

- I: set of customers.
- J: set of possible locations.
- F: subset of locations of J that could fail.
- NF: subset of locations of J that can not fail.

Parameters

- q: probability of fail for each facility F.
- $h_i \ge 0$: demand of each customer $i \in I$.
- *d_{ij}* ≥ 0: cost of sending one unity of product from facility *j* ∈ *J* to customer *i*.
- $\theta_i \ge 0$: non-service cost of customer $i \in I$.
- $f_j \ge 0$: open cost for location j.

Introduction to RFLP and CRFLP	Model o●ooo	Exact approach 000000000000	Computational experience	Conclusions 0000
CRFLP Model				

<u>Variables</u>

- X_j: binary variables indicating if facility j is open.
- *Y*_{ijr}: binary variables indicating if *j* is the (*r* + 1)-th backup-facility of customer *i*.

Objective function

min
$$\alpha w_1 + (1 - \alpha) w_2$$

where α is a value between [0,1], $\textit{R} = \{0,...,|\textit{F}|\}$ and

$$w_1 = \sum_{j \in J} f_j X_j + \sum_{i \in I} \sum_{j \in J} h_i d_{ij} Y_{ij0}$$

$$w_2 = \sum_{i \in I} h_i \left[\sum_{j \in \mathsf{NF}} \sum_{r \in \mathsf{R}} d_{ij} q^r Y_{ijr} + \sum_{j \in \mathsf{F}} \sum_{r \in \mathsf{R}} d_{ij} q^r (1-q) Y_{ijr} \right].$$

Introduction to RFLP and CRFLP	Model	Exact approach	Computational experience	Conclusions
00	○○●○○	000000000000		0000
CRELP Model				

Constraints

s.a
$$\sum_{j \in F} Y_{ijr} + \sum_{j \in NF} \sum_{s=0}^{r} Y_{ijs} = 1 \qquad \forall i \in I, r \in R \qquad (1)$$
$$\sum_{r \in R} Y_{ijr} \leq X_j \qquad \forall i \in I, j \in J \qquad (2)$$
$$X_u = 1 \qquad (3)$$
$$\sum_{i \in I} h_i Y_{ij0} \leq Q_j X_j \qquad \forall j \in J \qquad (4)$$
Capacity constraints
$$(5)$$
$$X_j \in \{0, 1\} \qquad \forall j \in J, r \in R \qquad (7)$$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

Exact approach

Computational experience

★ ∃ → ★

Conclusions 0000

Expected overload

$$\sum_{j \in O(X)} \mathbb{E} \left[\left(\xi_j \cdot \underbrace{\sum_{i \in I} h_i \left(\sum_{r \in R} Y_{ijr} \cdot \prod_{s < r} \left(\sum_{j' \in O(X)} Y_{ij's} (1 - \xi_{j'}) \right) \right)}_{\text{demand at } j \text{ according to } \xi} - Q_j \right)^+ \right]$$

- O(X) ⊂ J is the set of locations where facilities have been placed
- $\xi_j \sim \text{Bernoulli}(1-q)$ for $j \in O_F(X) = O(X) \cap F$,
- $\xi_j = 1$ for $j \in \mathcal{O}_{NF}(X) = \mathcal{O}(X) \cap NF$

Modeling expected overload requires full scenario enumeration being hard to solve it even for small instances.

Introduction to RFLP and CRFLP	Model ○○○○●	Exact approach 000000000000	Computational experience	Conclusions 0000
Capacity constrain	ts			

ORFLP-S(θ **)** is based on staggered capacities.

$$\sum_{s=0}^{r} \sum_{i \in I} h_i Y_{ijs} \le \theta^r Q_j \quad \forall j \in J, r > 1$$

this model does not manage the overload.

CRFLP-B1(β) bounds an upper bound for expected overload, then their solutions could not be optimal.

 $\begin{array}{l} \sum_{j\in F}\sum_{r>0}q^r(1-q)\lambda_{jr}+\sum_{j\in NF}\sum_{r>0}q^r\lambda_{jr}\leq\beta\\ \text{where }\lambda_{jr}\text{: overload at facility }j\text{ at level }r\end{array}$

CRFLP-LR(β) bounds a linear estimation of expected overload being an approximated model:
 2.67827qλ
_{•1} + 1.66348q²λ
_{•2} + 1.92325q³λ
_{•3} + 4.43350q⁴λ
_{•4} ≤ β where λ
_{•r}: average overload at level r.

• • = • • = •

Model 00000 Exact approach

Computational experience

Image: A image: A

Conclusions 0000

Proposition 1

Proposition

For any set O(X) of open facilities it is possible to obtain an assignment Y such that the expected overload is bounded by β . **Proof:**

Given that in any feasible solution the dummy facility is open, the demand that produces excess over the expected overload cannot be served.

Introduction to RFLP and CRFLP 00	Model 00000	Exact approach	Computational experience	Conclusions 0000
The key				

If we make a new assignment so that the expected overload is bounded:

- The non-service expected cost increases. This only depends on the assignment dummy cost and it is the same for solutions of the 'same type'. Later, we will refer it as cost of the type of solution.
- The overcost increases, too. This depends on the specific solution. In the following, we will refer to this overcost as overcost of the specific solution.

Introduction to RFLP and CRFLP	Model 00000	Exact approach 00●000000000	Computational experience	Conclusions 0000
Partition of J				

Let $\mathcal{P} = \{p_0, ..., p_{K-1}\}$ be a partition in K classes of the set J.

Each class p_k contains facilities with:

- same type of service disruption,
- same capacity level.

Example 1

$$\begin{array}{l} J = \{A, B, C, u\} \text{ such that } Q_A = Q_B = Q_C = 50, \ Q_u = \infty, \\ F = \{A, B\}, \ NF = \{C, u\} \\ \text{then } \mathcal{P} = \{p_1, p_2, p_u\} \text{ with } p_1 = \{A, B\}, \ p_2 = \{C\} \text{ and } p_u = \{u\} \end{array}$$

Let n(X) be the array containing the number of opened facilities for each class. Two solutions X_1 and X_2 are of the same type if $n(X_1) = n(X_2)$.

O(X)	$\bar{O}(X)$	n(X)
A, u	B, C	(1, 0, 1)
B, u	A, C	(1, 0, 1)
A, B, C, u	Ø	(2, 1, 1)

Model 00000 Exact approach

Computational experience

• □ ▶ • □ ▶ • □ ▶

Conclusions 0000

Example of the exact approach

$$J = \{A, B, C, u\} \text{ such that}$$

$$Q_A = Q_B = Q_C = 50, \ Q_u = \infty,$$

$$F = \{A, B\}, \ NF = \{C, u\}$$
then $\mathcal{P} = \{p_1, p_2, p_u\}$ with $p_1 = \{A, B\}, \ p_2 = \{C\}$ and $p_u = \{u\}$

	Master Problem					n the	solution
lt.	v	O(X)	$\bar{O}(X)$	n _i	Wi	Zi	Overall
1	100	A, u	B, C	(1, 0, 1)	400	450	550
2	150	B, u	A, C	(1, 0, 1)	*	350	500
3	400	A, C, u	В	(1, 1, 1)	100	150	550
4	410	B, C, u	А	(1, 1, 1)	*	100	510
5	500	B, u	A, C	(1, 0, 1)	*	*	500

Introduction to RFLP and CRFLP	Model 00000	Exact approach	Computational experience	Conclusions 0000
Master Problem				

(MASTER) min
$$\alpha w_1 + (1 - \alpha)w_2 + Z$$

$$\begin{array}{l} (1)-(4),(6),(7)\\ \displaystyle\sum_{r\in R}\sum_{i\in I}h_id_{iu}q^rY_{iur}\geq W \\ W \text{ constraints} \\ Z \text{ constraints} \\ W, Z\in \mathbb{R} \end{array} \tag{8}$$

- W represents the cost of the type of solution
- Z represents the overcost of the specific solution.

Introduction to RFLP and CRFLP	Model 00000	Exact approach	Computational experience	Conclusions 0000
W constraints				

$$\sum_{r \in R} \sum_{i \in I} h_i d_{iu} q^r Y_{iur} \ge W$$
(12)

$$\sum_{j \in p_k} X_j = \sum_{i=0}^{|p_k|} ic_i^k; \qquad \sum_{i=0}^{|p_k|} c_i^k = 1; p_k \in \mathcal{P}$$
(13)

$$\sum_{k=0}^{|\mathcal{P}|-1} c_{n_k}^k - b_a \le |\mathcal{P}| - 1$$
(14)

$$\sum_{i=1}^{a} b_i \le 1; \qquad \sum_{i=1}^{a} w_i b_i = W;$$
(15)

$$c_i^k \in \{0,1\}; b_1 \in \{0,1\}; k \in \{0,...,|\mathcal{P}|-1\}, i \in \{0,...,|p_k|\}$$
(16)

w_i is the cost of the type of solution.

Introduction to RFLP and CRFLP 00	Model 00000	Exact approach	Computational experience	Conclusions 0000
W constraints				

Example 2 Suppose for *Example 1*:

- 2 previous iterations: $w_1 = 10.5$ and $w_2 = 7.5$ were obtained,
- current iteration (#3): n(X) = (2, 0, 1) and $w_3 = 6.5$.

Then, the constraints to be added are:

$$egin{aligned} & c_2^0 + c_0^1 + c_1^2 - b_3 \leq 2 \ & b_1 + b_2 + b_3 \leq 1 \ & 10.5b_1 + 7.5b_2 + 6.5b_3 = W \ & b_3 \in \{0,1\} \end{aligned}$$

Introduction to RFLP and CRFLP	Model 00000	Exact approach	Computational experience	Conclusions 0000
Z constraints				

(MASTER) min
$$\alpha w_1 + (1 - \alpha)w_2 + Z$$

$$\sum_{j \in J \setminus O(X)} zX_j + Z \ge z$$

Target: $E(X, Y) < 4 \ (\beta = 4)$ $J = \{A, B, C, u\}, \ O(X) = \{A, u\}, \ \bar{O}(X) = \{B, C\}$ $445.3X_B + 445.3X_C + Z \ge 445.3$

< ロ > < 同 > < 回 > < 回 > .

э

Model

Exact approach

Computational experience

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Conclusions 0000

Slave problem AP-D(X)

$$\min \sum_{i \in I} \sum_{r \geq 1} h_i d_{iu} \sum_{r \geq 1} q^r Y'_{iur}$$

$$s.t. \sum Y'_{ijr} + \sum \sum_{r} Y'_{ijs} = 1 \quad i \in I, r \in R$$

$$(17)$$

$$j \in \mathcal{O}_{F}(X) \xrightarrow{y, y} j \in \mathcal{O}_{NF}(X) \xrightarrow{z=0} y^{y}$$

$$\sum_{r \in R} Y'_{jjr} \le 1 \qquad \qquad i \in I, j \in O(X)$$
(18)

$$h_{i}(\xi_{j}^{s}Y_{ijr}' - \sum_{k \in O(X): k \neq j} \sum_{t=0}^{r-1} \xi_{k}^{s}Y_{ikt}') \leq \delta_{ij}^{s}i \in I, j \in O(X), r \in R, s \in S$$
(19)

$$\sum_{i \in I} \delta_{ij}^{s} - Q_j \le \theta_j^{s} \qquad \qquad j \in O(X), s \in S$$
(20)

$$\sum_{j \in O(X)} \sum_{s \in S} p^s \theta_j^s \le B \tag{21}$$

$$Y'_{ijr} \in \{0,1\}$$
 $i \in I, j \in O(X), r \in R$ (22)

$$\delta_{ij}^{s}, \theta_{j}^{s} \in \mathbb{R} \qquad \qquad i \in I, j \in O(X), r \in R$$
(23)

AP - D(X) model is based on scenarios taken into account only the open facilities, then the number of combinations has been highly reduced.

Model

Exact approach

Computational experience

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Conclusions 0000

Slave problem AP-A(X)

$$\min \alpha \left(\sum_{i \in I} \sum_{j \in O(X)} h_i d_{ij} Y'_{ij0} \right) + (1 - \alpha) \sum_{i \in I} h_i \left(\sum_{j \in O_{NF}(X)} \sum_{r \in R} d_{ij} q^r Y'_{ijr} + \sum_{j \in O_F(X)} \sum_{r \in R} d_{ij} q^r (1 - q) Y'_{ijr} \right)$$
s.t. (17) - (23)

Introduction	RFLP	and	CRFLP

Model 00000 Exact approach

Computational experience

< ロ > < 同 > < 三 > < 三 >

Conclusions 0000

Proposition 2

Proposition

If the non-service costs are higher than other assignment costs, i.e., $d_{iu} > d_{ij}$ for all $i \in I$, $j \in J \setminus \{u\}$, then any optimal solution of AP-A(X) is also an optimal solution of AP-D(X).

Implications: in cases which $d_{iu} > d_{ij}$ (usual cases) we also employ AP - A(X) for obtaining the minimum non-service expected cost capturing the assignments to the dummy facility. Then, we do not solve AP - D(X) problem for these cases.

Introduction	RFLP	and	CRFLP

Model 00000 Exact approach ○○○○○○○○○○○ Computational experience

< ロ > < 同 > < 三 > < 三 > <

э

Conclusions 0000

Algorithm 1: $(v^*, X^*, Y^*) = main_algorithm()$ 1 master = model(QRFLP);2 (c, X, Y) = solve(master); **3** overload = E(X,Y): 4 a = 1: 5 if overload > β then 6 $v^* = + \inf;$ 7 else 8 $v^* = c;$ 9 $(X^*, Y^*) = (X, Y)$ 10 while $v^* > c \& time < t limit do$ 11 $(w_a, z, Y') = \text{new}_\text{assignments}(O(X), c, \beta);$ add_overcost(master, z, X); 12 if $c + v < v^*$ then 13 $v^* = c + z$: 14 $(X^*, Y^*) = (X, Y')$ 15 16 if $is_new_distribution_of_open_facilities(O(X))$ then add_min_non_service_cost(master, O(X), \mathcal{P} , w, a); 17 18 a = a + 1;19 (c, X, Y) = solve(master);20 return (v*, X*, Y*)

M.Albareda-Sambola, M.Landete, JF.Monge, JL.Sainz-Pardo Exact algorithm for the CRFLP

Model 00000 Exact approach

Computational experience

(日)

Conclusions 0000

Generated instances

	Ħ	Instance #	Customers	F	<i>N</i> F ^(*)	q	f_{F} (×1000)	f _{NF} / f _F
S20_50_a	180	1 - 10	20	50	0	0.05, 0.10, 0.20	1, 2, 3	1, 2
S20_50_b	180	1 - 10	20	35	15	0.05, 0.10, 0.20	1, 2, 3	1, 2
S50_50_a	10	1 - 10	50	50	0	0.05	2	2
S50_50_b	10	1 - 10	50	35	15	0.05	2	2
S20_75_a	10	11 - 20	20	75	0	0.05	2	2
S20_75_b	10	11 - 20	20	45	30	0.05	2	2

(*): excluding dummy

Instances built from the capacitated p-median instances of the OR-LIBRARY.

 $\alpha = 0.5$, non-service cost: $\rho = 400$.

Model

Exact approach

Computational experience

(日)

э

Conclusions 0000

Average values S20_50 instances

	v*	E(X, Y)	P(overload)	Dummy	# Open	Time
MASTER	8997.20	5.19	0.07	0.26	3.44	7.75
CRFLP-B1(3)	9378.19	1.64	0.06	1.92	3.67	30.20
CRFLP-B1(6)	9143.23	3.90	0.07	0.94	3.52	32.33
CRFLP-LR(3)	9287.02	2.53	0.07	1.68	3.57	31.71
CRFLP-LR(6)	9051.44	4.65	0.07	0.56	3.47	17.82
CRFLP-EX(3)	9313.96	2.15	0.10	1.52	3.63	62.82
CRFLP-EX(6)	9143.23	3.90	0.07	0.94	3.52	23.13

M.Albareda-Sambola, M.Landete, JF.Monge, JL.Sainz-Pardo Exact algorithm for the CRFLP

Model

Exact approach

Computational experience

(日)

э

Conclusions 0000

Average values S50_50 instances

	v*	E(X, Y)	$\mathbb{P}(\text{overload})$	Dummy	#Open	Time	Solved
MASTER	17955.67	22.06	0.23	0.00	6.10	719.03	18
CRFLP-B1(3)	21428.69	2.33	0.15	16.37	6.75	187.00	20
CRFLP-B1(6)	20870.85	4.71	0.19	13.37	6.75	215.00	20
CRFLP-LR(3)	21198.76	3.31	0.16	15.12	6.75	1152.60	18
CRFLP-LR(6)	20449.32	6.41	0.21	11.07	6.75	1188.75	16
CRFLP-EX(3)	19961.25	3.00	0.21	10.37	6.10	3600.00	2
CRFLP-EX(6)	19671.84	5.99	0.22	8.68	6.10	3600.00	3

Model

Exact approach

Computational experience

(日)

э

Conclusions 0000

Average values S20_75 instances

	v*	E(X, Y)	$\mathbb{P}(overload)$	Dummy	#Open	Time	Solved
MASTER	9806.13	5.4	0.12	0.22	3.6	349.25	20
CRFLP-B1(3)	11090.57	1.32	0.10	2.44	4.4	1412.03	19
CRFLP-LR(3)	10885.10	2.57	0.12	1.91	4.3	1337.10	17
CRFLP-EX(3)	10496.21	2.84	0.15	1.17	4.1	1398.65	18

Introduction to RFLP and CRFLP	Model	Exact approach	Computational experience	Conclusions
00	00000	000000000000		0000

Distribution of overload and non-service demand

M.Albareda-Sambola, M.Landete, JF.Monge, JL.Sainz-Pardo

Exact algorithm for the CRFLP

Introduction to RFLP and CRFLP	Model 00000	Exact approach 000000000000	Computational experience	Conclusions ●000
Conclusions				

- We have proposed a **dynamic approach** in order to provide the best solution strictly bounding the expected overload of the *CRFLP*.
- The approach proposed highly reduces the combinatorial difficulty inherent to the problem by:
 - Introducing the minimum overcost for each combination among facilities of the same type (W constraints).
 - Associating the overcost due to the assignment for a given set of open facilities that bound the overload (Z constraints).
- This approach has provided the most promising results not only in terms of the cost for strictly limiting the expected overload, but in many cases even in less time that the approximated methods, too.
- Even in all of the instances in which the exact method has not finished in time, the solution returned has worked better than the solution provided by the other methods.

Introduction	RFLP	and	CRFLP

Model 00000

Future research lines

- We can consider **developing heuristic algorithms** based on this dynamic method, and so applying these for solving larger instances.
- Since the idea of controlling the expected overload by exact dynamic approach has worked efficiently, we can also consider extending this idea to other reliability problems.

Introduction to RFLP and CRFLP	Model 00000	Exact approach 000000000000	Computational experience	Conclusions
Some references				

- Snyder, L. & Daskin, M.S. (2005). Reliability models for facility location: The expected failure cost case. Transportation Science, 39 (3), 400 416.
- Albareda-Sambola, M. & Landete, M. & Monge, J.F. & Sainz-Pardo, J.L. (2017) Introducing capacities in the location of unreliable facilities. European Journal of Operational Research, 259, 175 - 188
- Espejo, I. & Marín, A. & Rodríguez-Chía, A.M. (2015). Capacitated p-center problem with failure foresight. European Journal of Operational Research, 247, 229 244.

A 3 5 4

< ロ > < 回 > < 回 > < 回 > < 回 >

э

