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RFLP

Introduced by Snyder & Daskin in Reliability models for facility
location: the expected failure cost case. Transportation Science, 39
(2.005).

Fixed-charge facility location problem.

Unsplittable demands.

Facilities can independently fail with homogeneous probability.

For each customer, a sequence of assignments to opened facilities is
defined and, at each scenario, the customer is served from the first
facility in the sequence that has not failed.

An extra dummy non-failing facility with large assignment costs is
used to model situations where a customer is lost or outsourced.

Facilities have unlimited capacity.
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CRFLP

CRFLP was introduced by Albareda-Sambola et al. in
Introducing capacities in the location of unreliable facilities.
European Journal of Operational Research, 259 (2.017)

It could have facilities with limited capacity.

Usually, capacities are considered as strict limits. However, in
many situations it is possible to increase the capacity of a
facility during emergency situations. In this work different
models were explored allowing to serve a demand slightly
over the capacity of the facilities, but keeping a limit on
these excesses.

Stability in the assignment of customers to facilities is
compulsory. Then, the orders of the assignments of customers
to facilities is predefined and provided by the best solution.
The reassignments are not allowed.
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Sets and parameters

Sets

I : set of customers.

J: set of possible locations.

F : subset of locations of J that could fail.

NF : subset of locations of J that can not fail.

Parameters

q: probability of fail for each facility F .

hi ≥ 0: demand of each customer i ∈ I .

dij ≥ 0: cost of sending one unity of product from facility
j ∈ J to customer i .

θi ≥ 0: non-service cost of customer i ∈ I .

fj ≥ 0: open cost for location j .
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CRFLP Model

Variables

Xj : binary variables indicating if facility j is open.

Yijr : binary variables indicating if j is the (r + 1)-th
backup-facility of customer i .

Objective function

min αw1 + (1− α)w2

where α is a value between [0, 1], R = {0, ..., |F |} and

w1 =
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

hidijYij0

w2 =
∑
i∈I

hi [
∑
j∈NF

∑
r∈R

dijq
rYijr +

∑
j∈F

∑
r∈R

dijq
r (1− q)Yijr ].
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CRFLP Model

Constraints

s.a
∑
j∈F

Yijr +
∑
j∈NF

r∑
s=0

Yijs = 1 ∀i ∈ I , r ∈ R (1)

∑
r∈R

Yijr ≤ Xj ∀i ∈ I , j ∈ J (2)

Xu = 1 (3)∑
i∈I

hiYij0 ≤ QjXj ∀j ∈ J (4)

Capacity constraints (5)

Xj ∈ {0, 1} ∀j ∈ J (6)

Yijr ∈ {0, 1} ∀i ∈ I , j ∈ J, r ∈ R (7)
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Expected overload

∑
j∈O(X )

E



ξj ·
∑
i∈I

hi

∑
r∈R

Yijr ·
∏
s<r

 ∑
j ′∈O(X )

Yij ′s(1− ξj ′)


︸ ︷︷ ︸

demand at j according to ξ

−Qj


+ ,

O(X ) ⊂ J is the set of locations where facilities have been
placed

ξj ∼ Bernoulli(1− q) for j ∈ OF (X ) = O(X ) ∩ F ,

ξj = 1 for j ∈ ONF (X ) = O(X ) ∩ NF

Modeling expected overload requires full scenario
enumeration being hard to solve it even for small instances.
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Capacity constraints

1 CRFLP-S(θ) is based on staggered capacities.

r∑
s=0

∑
i∈I

hiYijs ≤ θrQj ∀j ∈ J, r > 1

this model does not manage the overload.

2 CRFLP-B1(β) bounds an upper bound for expected overload, then
their solutions could not be optimal.∑

j∈F
∑

r>0 q
r (1− q)λjr +

∑
j∈NF

∑
r>0 q

rλjr ≤ β
where λjr : overload at facility j at level r

3 CRFLP-LR(β) bounds a linear estimation of expected overload
being an approximated model:

2.67827qλ̄•1 + 1.66348q2λ̄•2 + 1.92325q3λ̄•3 + 4.43350q4λ̄•4 ≤ β
where λ̄•r : average overload at level r .
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Proposition 1

Proposition

For any set O(X ) of open facilities it is possible to obtain an
assignment Y such that the expected overload is bounded by β.
Proof:
Given that in any feasible solution the dummy facility is open, the
demand that produces excess over the expected overload cannot
be served. �
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The key

If we make a new assignment so that the expected overload is bounded:

1 The non-service expected cost increases. This only depends on the
assignment dummy cost and it is the same for solutions of the
’same type’. Later, we will refer it as cost of the type of solution.

2 The overcost increases, too. This depends on the specific solution.
In the following, we will refer to this overcost as overcost of the
specific solution.
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Partition of J

Let P = {p0, ..., pK−1} be a partition in K classes of the set J.

Each class pk contains facilities with:

same type of service disruption,

same capacity level.

Example 1

J = {A,B,C , u} such that QA = QB = QC = 50, Qu =∞,
F = {A,B}, NF = {C , u}
then P = {p1, p2, pu} with p1 = {A,B}, p2 = {C} and pu = {u}

Let n(X ) be the array containing the number of opened facilities for each
class. Two solutions X1 and X2 are of the same type if n(X1) = n(X2).

O(X ) Ō(X ) n(X )
A, u B, C (1, 0, 1)
B, u A, C (1, 0, 1)
A, B, C, u ∅ (2, 1, 1)
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Example of the exact approach

J = {A,B,C , u} such that
QA = QB = QC = 50, Qu =∞,

F = {A,B}, NF = {C , u}
then P = {p1, p2, pu} with p1 = {A,B}, p2 = {C} and pu = {u}

Master Problem From the solution
It. v O(X ) Ō(X ) ni wi zi Overall

1 100 A, u B, C (1, 0, 1) 400 450 550

2 150 B, u A, C (1, 0, 1) * 350 500

3 400 A, C, u B (1, 1, 1) 100 150 550

4 410 B, C, u A (1, 1, 1) * 100 510

5 500 B, u A, C (1, 0, 1) * * 500
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Master Problem

(MASTER) min αw1+ (1− α)w2 + Z

(1)− (4), (6), (7)∑
r∈R

∑
i∈I

hidiuq
rYiur ≥W (8)

W constraints (9)

Z constraints (10)

W ,Z ∈ R (11)

W represents the cost of the type of solution

Z represents the overcost of the specific solution.

M.Albareda-Sambola,M.Landete,JF.Monge,JL.Sainz-Pardo Exact algorithm for the CRFLP



Introduction to RFLP and CRFLP Model Exact approach Computational experience Conclusions

W constraints

∑
r∈R

∑
i∈I

hidiuq
rYiur ≥W (12)

∑
j∈pk

Xj =

|pk |∑
i=0

icki ;

|pk |∑
i=0

cki = 1; pk ∈ P (13)

|P|−1∑
k=0

cknk − ba ≤ |P| − 1 (14)

a∑
i=1

bi ≤ 1;
a∑

i=1

wibi = W ; (15)

cki ∈ {0, 1}; b1 ∈ {0, 1}; k ∈ {0, ..., |P| − 1}, i ∈ {0, ..., |pk |} (16)

wi is the cost of the type of solution.
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W constraints

Example 2
Suppose for Example 1 :

2 previous iterations: w1 = 10.5 and w2 = 7.5 were obtained,

current iteration (#3): n(X ) = (2, 0, 1) and w3 = 6.5.

Then, the constraints to be added are:

c0
2 + c1

0 + c2
1 − b3 ≤ 2

b1 + b2 + b3 ≤ 1

10.5b1 + 7.5b2 + 6.5b3 = W

b3 ∈ {0, 1}
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Z constraints

(MASTER) min αw1+ (1− α)w2 + Z∑
j∈J\O(X )

zXj + Z ≥ z

Example 3

Target: E(X, Y) < 4 (β = 4)

J = {A,B,C , u}, O(X ) = {A, u}, Ō(X) = {B, C}

445.3XB + 445.3XC + Z ≥ 445.3
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Slave problem AP-D(X)

min
∑
i∈I

hi diu
∑
r≥1

qrY ′iur

s.t.
∑

j∈OF (X )

Y ′ijr +
∑

j∈ONF (X )

r∑
s=0

Y ′ijs = 1 i ∈ I , r ∈ R (17)

∑
r∈R

Y ′ijr ≤ 1 i ∈ I , j ∈ O(X ) (18)

hi (ξ
s
j Y
′
ijr −

∑
k∈O(X ):k 6=j

r−1∑
t=0

ξ
s
kY
′
ikt ) ≤ δsij i ∈ I , j ∈ O(X ), r ∈ R, s ∈ S (19)

∑
i∈I

δ
s
ij − Qj ≤ θ

s
j j ∈ O(X ), s ∈ S (20)

∑
j∈O(X )

∑
s∈S

psθsj ≤ B (21)

Y ′ijr ∈ {0, 1} i ∈ I , j ∈ O(X ), r ∈ R (22)

δ
s
ij , θ

s
j ∈ R i ∈ I , j ∈ O(X ), r ∈ R (23)

AP − D(X ) model is based on scenarios taken into account only the

open facilities, then the number of combinations has been highly reduced.
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Slave problem AP-A(X)

min α

∑
i∈I

∑
j∈O(X )

hi dijY
′
ij0

 + (1− α)
∑
i∈I

hi

 ∑
j∈ONF (X )

∑
r∈R

dijq
rY ′ijr +

∑
j∈OF (X )

∑
r∈R

dijq
r (1− q)Y ′ijr


s.t. (17)− (23)
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Proposition 2

Proposition

If the non-service costs are higher than other assignment costs,
i.e., diu > dij for all i ∈ I , j ∈ J \ {u}, then any optimal solution of
AP-A(X) is also an optimal solution of AP-D(X).

Implications: in cases which diu > dij (usual cases) we also
employ AP − A(X ) for obtaining the minimum non-service
expected cost capturing the assignments to the dummy facility.
Then, we do not solve AP − D(X ) problem for these cases.
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Generated instances

] Instance ] Customers |F| |NF |(∗) q fF (×1000) fNF /fF
S20 50 a 180 1 - 10 20 50 0 0.05, 0.10, 0.20 1, 2, 3 1, 2
S20 50 b 180 1 - 10 20 35 15 0.05, 0.10, 0.20 1, 2, 3 1, 2
S50 50 a 10 1 - 10 50 50 0 0.05 2 2
S50 50 b 10 1 - 10 50 35 15 0.05 2 2
S20 75 a 10 11 - 20 20 75 0 0.05 2 2
S20 75 b 10 11 - 20 20 45 30 0.05 2 2

(∗): excluding dummy

Instances built from the capacitated p-median instances of the
OR-LIBRARY.

α = 0.5, non-service cost: ρ = 400.
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Average values S20 50 instances

v∗ E(X , Y ) P(overload) Dummy # Open Time
MASTER 8997.20 5.19 0.07 0.26 3.44 7.75
CRFLP-B1(3) 9378.19 1.64 0.06 1.92 3.67 30.20
CRFLP-B1(6) 9143.23 3.90 0.07 0.94 3.52 32.33
CRFLP-LR(3) 9287.02 2.53 0.07 1.68 3.57 31.71
CRFLP-LR(6) 9051.44 4.65 0.07 0.56 3.47 17.82
CRFLP-EX(3) 9313.96 2.15 0.10 1.52 3.63 62.82
CRFLP-EX(6) 9143.23 3.90 0.07 0.94 3.52 23.13
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Average values S50 50 instances

v∗ E(X , Y ) P(overload) Dummy #Open Time Solved
MASTER 17955.67 22.06 0.23 0.00 6.10 719.03 18
CRFLP-B1(3) 21428.69 2.33 0.15 16.37 6.75 187.00 20
CRFLP-B1(6) 20870.85 4.71 0.19 13.37 6.75 215.00 20
CRFLP-LR(3) 21198.76 3.31 0.16 15.12 6.75 1152.60 18
CRFLP-LR(6) 20449.32 6.41 0.21 11.07 6.75 1188.75 16
CRFLP-EX(3) 19961.25 3.00 0.21 10.37 6.10 3600.00 2
CRFLP-EX(6) 19671.84 5.99 0.22 8.68 6.10 3600.00 3
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Average values S20 75 instances

v∗ E(X , Y ) P(overload) Dummy #Open Time Solved
MASTER 9806.13 5.4 0.12 0.22 3.6 349.25 20
CRFLP-B1(3) 11090.57 1.32 0.10 2.44 4.4 1412.03 19
CRFLP-LR(3) 10885.10 2.57 0.12 1.91 4.3 1337.10 17
CRFLP-EX(3) 10496.21 2.84 0.15 1.17 4.1 1398.65 18
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Distribution of overload and non-service demand
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Conclusions

We have proposed a dynamic approach in order to provide the
best solution strictly bounding the expected overload of the CRFLP.

The approach proposed highly reduces the combinatorial
difficulty inherent to the problem by:

Introducing the minimum overcost for each combination
among facilities of the same type (W constraints).
Associating the overcost due to the assignment for a given set
of open facilities that bound the overload (Z constraints).

This approach has provided the most promising results not only in
terms of the cost for strictly limiting the expected overload, but in
many cases even in less time that the approximated methods,
too.

Even in all of the instances in which the exact method has not
finished in time, the solution returned has worked better than
the solution provided by the other methods.
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Future research lines

We can consider developing heuristic algorithms based on this
dynamic method, and so applying these for solving larger instances.

Since the idea of controlling the expected overload by exact
dynamic approach has worked efficiently, we can also consider
extending this idea to other reliability problems.
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