Feasible solutions for the Distance Constrained Close-Enough Arc Routing Problem

Á. Corberán⁽¹⁾, I. Plana⁽¹⁾, <u>M. Reula⁽¹⁾</u> and J.M. Sanchis⁽²⁾

University of Valencia
 Technical University of Valencia

IX International Workshop on Locational Analysis and Related Problems

VNIVERSITAT DÖVALÈNCIA (ÒV)

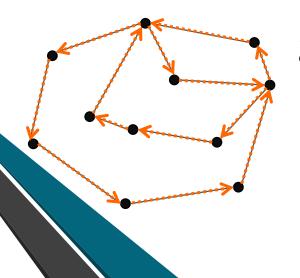
Arc Routing Problems

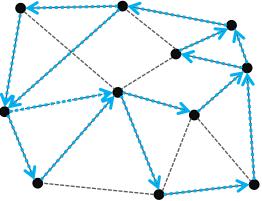
The goal of ARPs is to find one or several routes traversing a given set of arcs or/and edges that requires to be served.

Important ARPs :

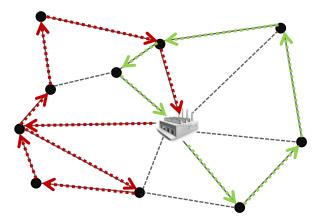
The Rural Postman Problem (RPP)

The Chinese Postman Problem (CPP)





The Capacitated Arc Routing Problem (CARP)



Arc Routing Problems

The Close Enough Arc Routing Problem

The **CEARP** considers that the service of a costumer is not associated with the traversal of an specific arc. The customer is served when the vehicle traverses any arc of a fixed subset of arcs.

Each customer is served when the vehicle gets closer than a certain distance r.

The problem consists of finding a **minimum cost tour** starting and ending at the depot, which traverses a set of arcs so that **all customers are served**.

Real-World Application

Automatic Meter Reading (water, electricity, gas)

Originally: done door to door.

<u>Nowadays</u>: a vehicle with an installed receiver reads the data when it gets closer than a certain distance from each meter.

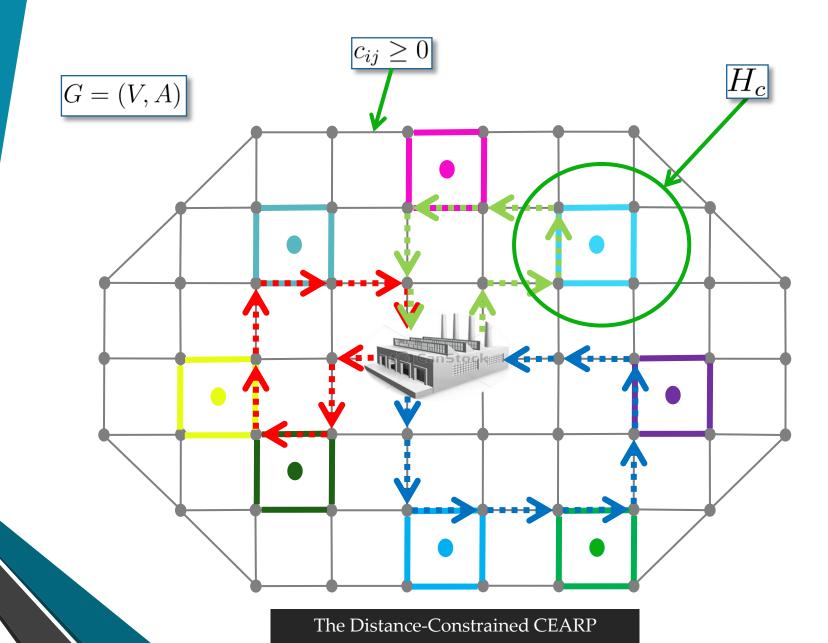
The Close Enough Arc Routing Problem (CEARP)

The Distance-Constrained CEARP with k-vehicles (DC-CEARP)

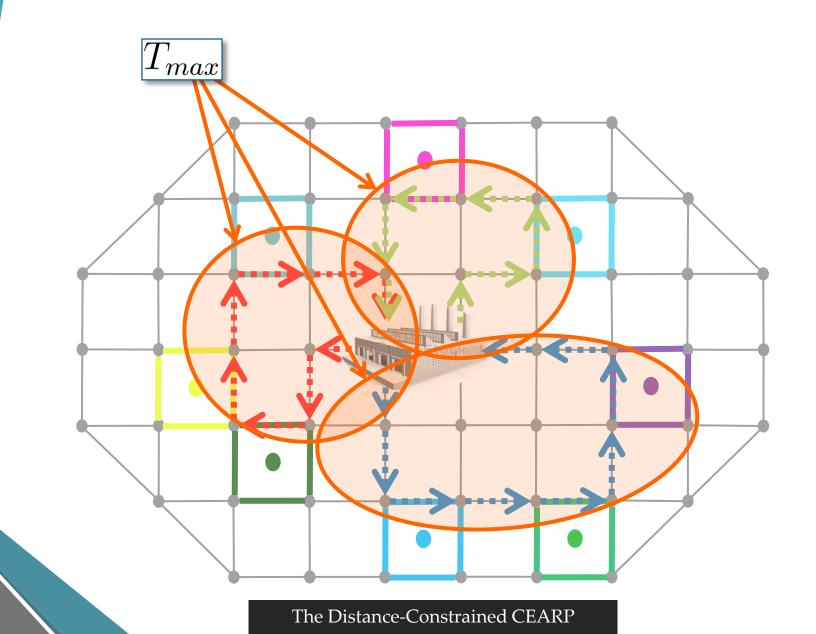
The **DC-CEARP** is a generalization of the CEARP using **k vehicles**, where the **maximum length** of each route is **limited**.

Find a set of *k-routes* of *minimum total lenght*, such that each customer is served and each route length does not exceed a given limit.

Problem definition (k=3):



Problem definition (k=3):



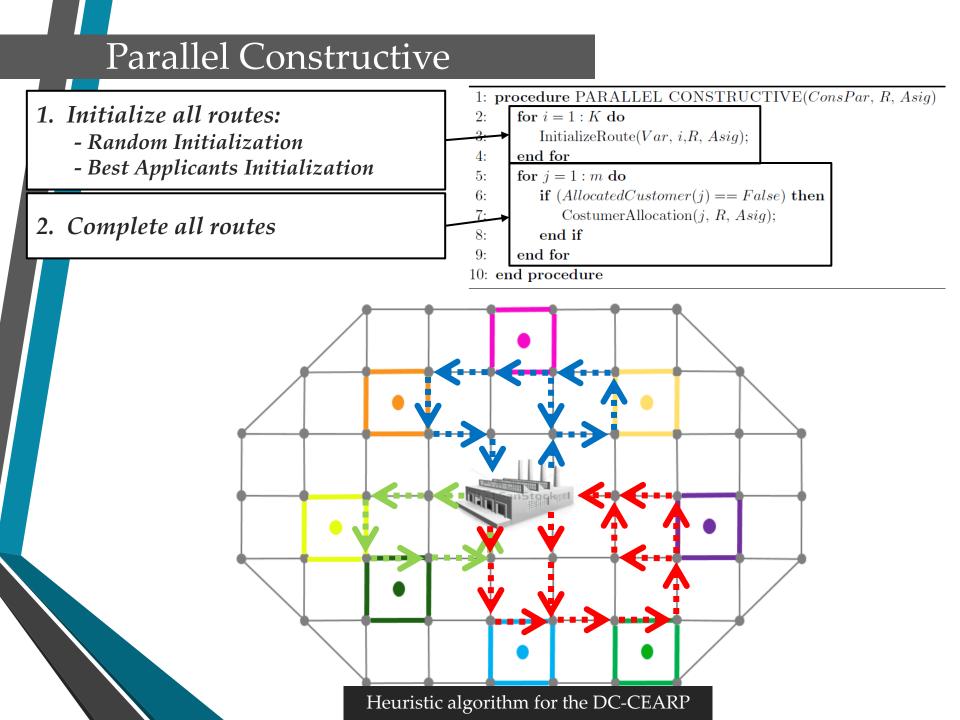
Heuristic algorithm for the DC-CEARP

	Input: $G, \mathbb{H}, T_{max}, Marg, iter_max, time_limit$								
	Output: S_{best}								
1	1 $T_L \leftarrow (1 + Marg) \times T_{max};$								
2	iter iter	$\leftarrow 0;$							
3	whil	e time_limit is not reached AND iter :	< iter mar do						
4	fe	r each Constructive algorithm do	Constructive Algorithm						
5		$S_c \leftarrow Constructive \ algorithm(T_L);$	U						
6		$S_i \leftarrow Local-Search(S_c, T_L);$							
7		2-Exchange (S_i, T_L) ; Local Search							
8		Destroy and Repair (S_i, T_L) ;							
9		$S_o \leftarrow Routes optimization(S_i, T_{max});$	Route Optimization						
10		if S_o is feasible and better than S_{iter}	Route Optimization						
11	1 $S_{iter} \leftarrow S_o;$								
12	if	if S_{iter} is feasible and better than S_{best} then							
13	$S_{best} \leftarrow S_{iter};$								
14	$4 iter \leftarrow 0;$								
15	15 else								
16	$iter \leftarrow iter + 1;$								

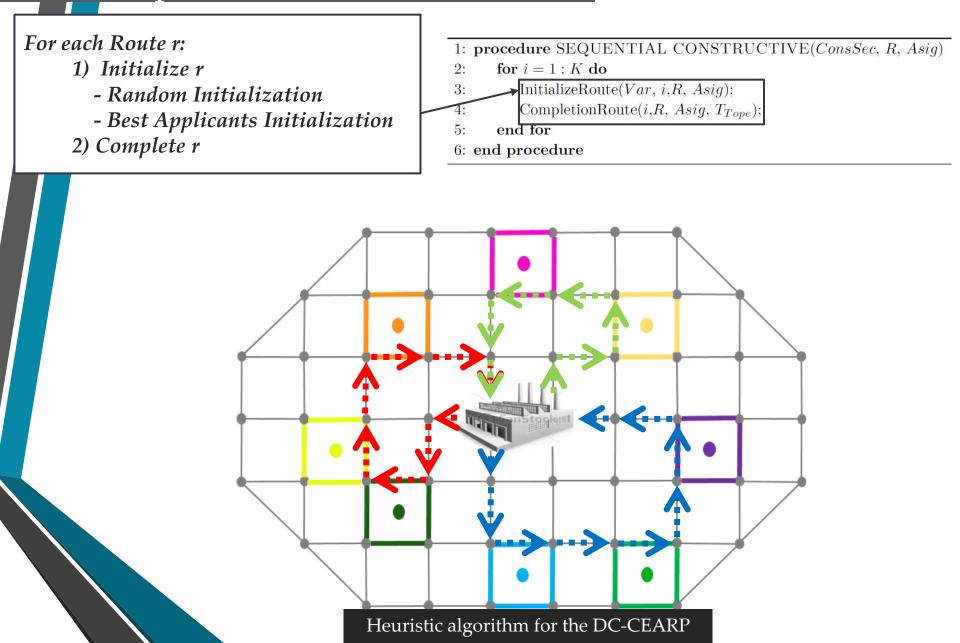
Constructive Algorithms

1.- Parallel Constructive

2.- Sequential Constructive



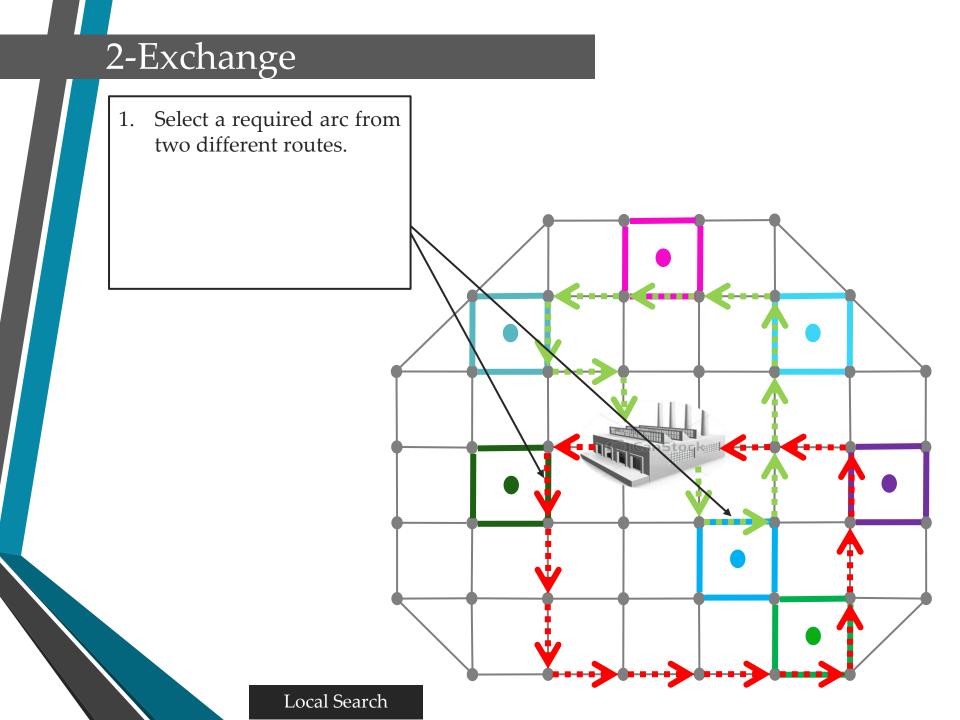
Sequential Constructive



Local Search

2 - Exchange

Destroy and Repair



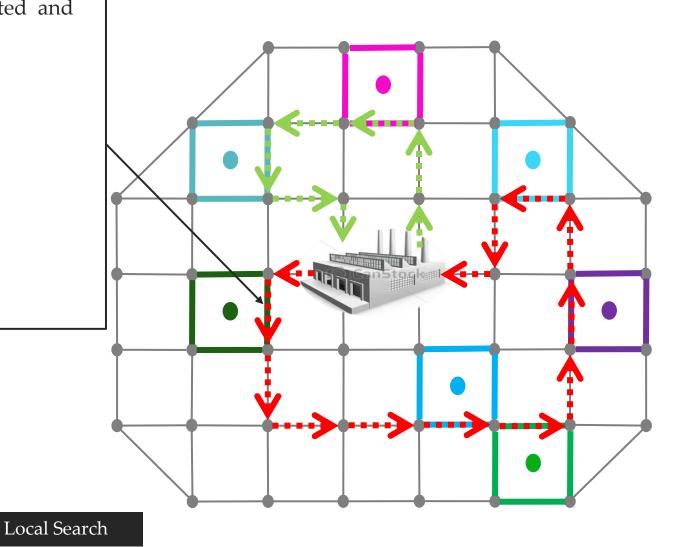
2-Exchange

- 1. Select a required arc from two different routes.
- 2. The selected arcs are exchanged, introducing them in the best posible position.

URINT

Destroy and Repair

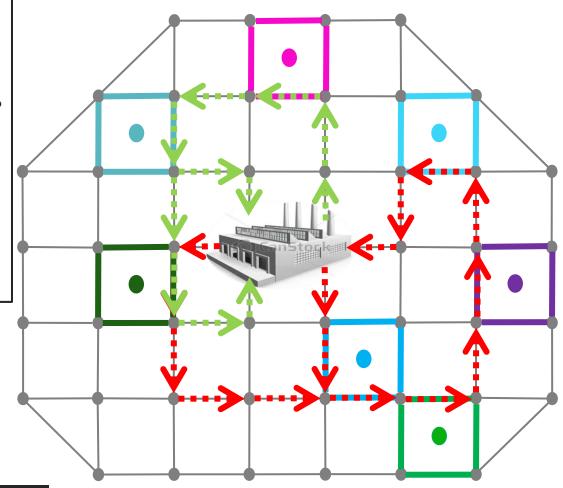
1. A required arc is randomly selected and removed.



Destroy and Repair

- 1. A required arc is randomly selected and removed.
- 2. The resultant route is closed by the shortest path.
- 3. Are all costumers served?
 - a. No: it is included in the best position of the nearest route.
 - b. Yes: no changes are made.

The algorithm repeats the procedure removing 1, 2 and 5 arcs simultaneously



Local Search

Route Optimization

Route Optimization

I	nput: $G, \mathbb{H}, T_{max}, Marg, iter_max,$	Has the route been optimized
(Dutput: S _{best}	before?
	$T_L \leftarrow (1 + Marg) \times T_{max};$	a. Yes! we have the minimum cost
2 i	$ter \leftarrow 0;$	route that serve a set of
3 V	while <i>time_limit</i> is not reached AN	customers.
4	for each Constructive algorithm d	
5	$S_c \leftarrow \text{Constructive algorithm}(T_I)$	b. No! we optimize the route
6	$S_i \leftarrow \text{Local-Search}(S_c, T_L);$	using a B&C for the CEARP
7	2-Exchange $(S_i, T_L);$	(Àvila et al. 2017)
8	Destroy and Repair(S_i, T	L);
9	$S_o \leftarrow Routes optimization(S_i, T_i)$	(max);
10	if S_o is feasible and better that	an S_{iter} then
11	$S_{iter} \leftarrow S_o;$	
12	if S_{iter} is feasible and better than	S_{best} then
13	$S_{best} \leftarrow S_{iter};$	
14	$iter \leftarrow 0;$	
15	else	
16	$ $ $iter \leftarrow iter + 1;$	

Computational experiments

Computing Environment:

- Intel Core i7-6700 @ 3.40GHz processor;
- · 32 GBytes of RAM;
- Coded in C++;
- B&C with CPLEX 12.7;

Stopping rules:

- 1. Maximum number of iterations without improving the solution;
- 2. Time Limit.

Instances for the DC-CEARP

To test the performance of the heuristic algorithm, we used four different sets of instances.

			$ A_R $		$ A_{NR} $			HI	
	V	A	Min	Max	Min	Max	N	/lin	Max
Random 50	50	300	105	292	7	193		10	100
Random 75	75	450	143	438	10	305		15	150
Albaida	116	174	83	99	75	91		19	34
Madrigue ras	196	316	152	181	135	164		23	48

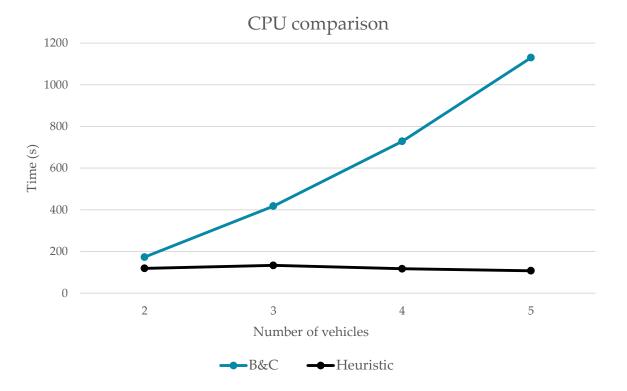
Instances with known optimal solution

						Time	e(s)	
2 Vehicle	#Inst	#Opt	# No Opt	$\operatorname{Gap}(\%)$	#No Sol	MH1	B&C	
Random50	12	9	3	$4,\!48$	0	$13,\!48$	$45,\!90$	
$\operatorname{Random}75$	12	8	4	$2,\!67$	0	22,09	388,5	
Albaida	24	21	3	0,32	0	117, 19	34	
Madrigueras	24	18	6	$1,\!20$	0	323,19	224,1	30%
	72	56	16	$2,\!17$	0	118,99	$173,\!13$	
					_	Time	e (s)	
3 Vehicle	#Inst	#Opt	#No Opt	$\operatorname{Gap}(\%)$	# No Sol	MH1	B&C	
Random50	11	9	2	0,42	0	26,90	83,00	
$\operatorname{Random}75$	12	6	6	3,20	0	26,20	603,1	
Albaida	24	22	2	$1,\!15$	0	$152,\!33$	$89,\!9$	
Madrigueras	21	13	8	3,23	0	327,85	894,1	69%
	68	50	18	2,00	0	133,32	417,53	

Instances with known optimal solution

						Tim	ne(s)	
4 Vehicle	#Inst	#Opt	#No Opt	$\operatorname{Gap}(\%)$	# No Sol	MH1	B&C	
Random50	9	5	4	2,08	0	21,07	179,30	
$\operatorname{Random}75$	10	5	5	$3,\!41$	0	36,08	771,1	
Albaida	21	18	3	$1,\!23$	0	$159,\!47$	338,7	
Madrigueras	13	9	4	4,19	0	251,76	1625,2	84%
	53	37	16	2,73	0	117,09	$728,\!58$	
					_	Time	e (s)	
5 Vehicle	#Inst	#Opt	#No Opt	$\operatorname{Gap}(\%)$	# No Sol	MH1	B&C	
Random50	2	1	1	$0,\!57$	0	$35,\!23$	456,40	
$\operatorname{Random}75$	4	2	2	$2,\!57$	0	$34,\!81$	1301, 1	
Albaida	17	11	4	0,96	2	$187,\!88$	316, 1	
Madrigueras	5	4	1	$3,\!47$	0	172,04	2447,2	90%
	28	18	8	1,89	2	$107,\!49$	1130,20	

Instances with known optimal solution



Instances with unknown optimal solution

	B&C	Matheuristic
# of feasible solutions	23/30	30/30
Average UB	14573.22	14528.73
# of best solutions	15/30	17/30
Average time	3600	405.34

Future advancements

- Polyhedral study of the problem;
- Integration of the heuristic in a B&C framework;
- Inclusion of other real-world constraints;

Feasible solutions for the Distance Constrained Close-Enough Arc Routing Problem

Á. Corberán⁽¹⁾, I. Plana⁽¹⁾, <u>M. Reula⁽¹⁾</u> and J.M. Sanchis⁽²⁾

Thanks for your attention!

IX International Workshop on Locational Analysis and Related Problems

